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Firing sequence storage using inhibitory synapses in networks
of pulsatil nonhomogeneous integrate-and-fire neural oscillators

Ivan J. Matus Bloch* and Claudio Romero Z.
Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Blanco Encalada 2008, Santiago, Chil

~Received 26 March 2002; published 24 September 2002!

We discuss a nonhomogeneous population of pulsatil integrate-and-fire neural oscillators, coupled through
purely inhibitory synapses. For instantaneous communication, we provide a strategy to generate synaptic
couplings to obtain simple periodic and stable firing patterns. We provide restrictions under which each stored
firing pattern is a unique attractor for the population dynamics. In the case of Peskin’s leaky integrator we show
results obtained from numerical simulations.
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I. INTRODUCTION

There has been much interest on the study of system
integrate-and-fire~IF! neurons@1–6#. This is mainly because
the individual description of each unit can be simply acco
plished through the use of one differential equation with
losing the key aspects of neuron behavior, with the emph
placed in the connectivity and interactions of large num
of units. It is expected that the behavior of systems mad
many of these simplified model neurons can shed light i
phenomena that persist in systems of more realistic and c
plex neurons. The type of behavior studied in this paper
been touched before in discussions of synchronization
neural assemblies. Experimental evidence suggests that
neurobiological processes have as a crucial ingredient
synchronized firing of groups of neurons@7–14#. These in-
triguing phenomena have stimulated theoretical work
many authors. Mirollo and Strogatz@15# were able to dem-
onstrate that fully connected homogeneous systems of ra
general IF oscillators have the tendency to spontaneo
synchronize when the communication among oscillators
pulsatil, instantaneous, and excitatory. Kuramoto@16# intro-
duced a phase model for each oscillator and was abl
study synchronization as a result of Hopf bifurcations in
evolution equation. His formulation also considered refr
tory periods and noise. The case of synchronization w
inhomogeneous IF neurons with instantaneous excita
pulsatil communication was studied by Tsodykset al. @17#.
These authors showed that even in the case of weak inte
tions in inhomogeneous systems, full synchronization w
incomplete and a finite population of unlocked neurons p
sisted. Another recent study of synchronization with inhom
geneous populations of IF neurons is the work of Senn
Urbanczik @18#, where synchronization of similar nonleak
IF neurons with excitatory interactions is discussed. In p
allel, there has been interest in noncoherent firing state
systems of IF neurons. Abbott and van Vreeswijk@19# with a
mean field approach have studied the stability of the non
herent states and the influence of noise. A work along
same lines has been carried out by van Vreeswijk@20#, with
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an homogeneous population of IF neurons. They studie
detail coherent and noncoherent states, their dependenc
the quality of the excitation — whether excitatory or inhib
tory —, as well as the delays of communication. In@21# they
study the conditions for self-sustained firing in populatio
of IF neurons. Hopfield and Herz@22# study the potentialities
of systems of homogeneous IF neurons to perform fast c
putations. These authors work in detail the case of the w
leaky integrator with excitatory interactions. Recent findin
on the increased computational capabilities of pulsed ne
networks of the IF type have promoted new efforts in t
understanding of their capabilities@23#. A recent competing
model for the IF neuron is the spike response model of G
stneret al. @24#, which also simplifies the description of eac
neuron to one integral equation with the advantage that
refractory period can be naturally included. Using th
model, recent advances in the detailed study of cohere
and incoherence in neural assemblies have been pos
@25–27#. Another source of interest in the study of the ge
eration of stable firing structures is the mounting experim
tal evidence showing that neural coding in some syste
appears to be linked to precise timing information on sp
events rather than on coarse rate values@28–34#.

The aim of the present paper is the study of conditio
that must be met by the synaptic couplings in populations
IF neurons in order to generate repetitive and structured
ing patterns of simple period, in which one neuron fires on
per cycle. This feature differentiates our approach from m
of the work mentioned above on pulsatil IF neurons, gen
ally dealing with generic synaptic couplings. We consid
only the case of instantaneous and inhibitory interactions,
including nonhomogeneous populations of IF neurons o
fairly general type. We find the necessary restrictions on
dynamics that allow the synaptic couplings to store the
formation on the firing patterns. These patterns turn out to
attractors for that dynamics. In this respect we are able
extend the convergence conditions of Mirollo and Strog
@15# to the case of nonhomogeneous populations and inh
tory synapses. The paper is organized as follows. In Se
we formulate the model and provide the conditions un
which the synaptic prescription can lead to stable firing p
terns. In Sec. III we explicitly demonstrate the theorem
convergence to the attractor. In Sec. IV we illustrate the a
lytical results with the use of Peskin’s model@35# and pro-
©2002 The American Physical Society27-1
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vide results from numerical simulations. Finally, in Sec.
we discuss the results.

II. MODEL

Let us start with the description of a network of integra
and-fire oscillators with instantaneous interactions,

dxi

dt
5Fi„xi~ t !…1Gi„xi~ t !…(

j 51

N

(
f

Ji j d~ t2t j
f !. ~1!

In Eq. ~1! xi(t) is a dynamic variable associated with osc
lator i. In the usual interpretations it corresponds to the me
brane potential of the given neural oscillator. The functi
Fi„xi(t)… drives oscillatori to fire in the absence of mutua
interactions. Firing occurs whenxi(t)5u i , whereu i is the
firing threshold of oscillatori. Once a given unit fires, its
dynamic variablex is immediately reset to zero. Simulta
neously, the effect of the firing is sensed by the rest of
population as impulses to their respectivex. The second term
on the right-hand side of Eq.~1! represents the net effect o
the firings of all the oscillators connected to uniti. The sum-
mation overj considers the indices of the rest of the popu
tion and the summation overf picks up their respective firing
times t j

f . The effect of each impulse received by uniti and
emitted by unitj is weighed by! the product of the consta
synaptic couplingsJi j and the functionGi„xi(t)…. When the
mutual interactions are inhibitory the product is negative.Ji j
is null if unit i does not receives pulses from unitj. In the
absence of mutual interactions, all the synaptic couplings
null. In this case the oscillators fire periodically with a peri
that depends on the functionFi„xi(t)…. As we require that the
units raise their dynamic variablesx from rest, taken as zero
to the thresholdu.0 it is necessary thatFi„xi(t)….0 when
0<xi(t)<u i . Anticipating events of hyperpolarization tha
occur when the effect of the inhibitory interactions may dri
xi(t) under zero we require thatFi„xi(t)….0 for all range of
values ofxi(t) under the thresholds.

To proceed further we make a usual change of variab
and defineyi(t) as the phase of uniti as follows:

yi~ t !5giE
0

xi (t) dx8

Fi~x8!
. ~2!

In Eq. ~2! the constantgi allows to normalizeyi(t) such
as yi(t)51 when xi(t)5u i . This means that gi

21

5*0
u idx8/Fi(x8). The constantsgi correspond to the natura

or intrinsic frequencies of each unit. AsFi(x8).0 the phase
yi(t) is univocally defined fromxi(t). On the other hand
dyi(t)/dt5@gi /Fi„xi(t)…#@dxi (t)/dt# . These results allow
to recast Eq.~1! as

dyi~ t !

dt
5gi1(

j 51

N

(
f

Hi j „yi~ t j
f !…d~ t2t j

f !, ~3!

where

Hi j „yi~ t !…5yi~xi~ t !1Gi„xi~ t !…Ji j !2yi„xi~ t !…. ~4!
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Equation ~3! shows that each unit evolves freely betwe
firing events with constant phase velocitiesgi . In addition,
the effect of each pulse sent by an oscillator depends on
value of the phase at the instant it is received. Now, we ar
a situation to write down the prescription to store phase
formation in the synaptic couplingsJi j .

Assume that we want the whole population to fire pe
odically with a common periodTl but preserve the phas
differences between firings of different units. We start t
population att50 with phasesyi(0)5yi

0 . There is one unit
that will fire first at timet1. Rename this unitj 51. All the
other units have phases less than 1. After firing, unitj 51
resets its phase to zero. The synaptic couplingsJk1 are ob-
tained from unitj 51 to the rest imposing thatHk1„yk(t

1)…
5(12gkTl)/(n21). Here the subscriptk labels each unit
other thanj 51. Now apply the effect of the pulse from un
j 51 to the rest, using the calculated synaptic coefficient
is clear that the net effect on every unit is an impulse
magnitude (12gkTl)/(n21). If Tl is chosen such thatTl
.1/gk for every unit k, the synapses are inhibitory. Afte
resetting of the unitj 51 and the instantaneous phase dec
ments of the other units have taken place, the whole pop
tion continues their free evolution to threshold until a seco
unit fires att2. Rename this unitj 52 and calculate a synap
tic couplingJk2 to every other unitk from Hk2„yk(t

2)…5(1
2gkTl)/(n21). As before, unitj 52 is reset to zero and we
apply the pulse fromj 52 weighed byJk2. The net effect on
every unit that is not firing is an inhibitory pulse of magn
tude (12gkTl)/(n21). The series of firing events and ca
culations ofJk j continue until every unit has fired once, i.e
the last pulse is emitted attn by unit j 5n. In the construc-
tion of Jk j , it is crucial that all units fire once and only onc
in the periodTl . This imposes some restrictions on the va
ues for the initial phasesyi

0 .
We can consider the procedure described above as a le

ing stage. Notice that after this stage, uniti has received a ne
effect resulting from the (n21) pulses from the rest of the
population, whose magnitude is equal to (n21)(1
2giTl)/(n21)5(12giTl). The net phase change of uniti
after the periodTl is yi(Tl)5gi(Tl2t i)1(n2 i )/(n21)(1
2giTl), where we have used the fact that after the firing
unit i at t i its phase is reset to zero; consequently, after t
instant there aren2 i other firing events, each generatin
impulses of size (12giTl)/(n21) to unit i. We can deter-
mine t i from the conditionyi(t

i)5yi(0)1gi t
i1( i 21)/(n

21)(12giTl)51, which gives t i5@12yi(0)2( i 21)/(n
21)(12giTl)#/gi . Replacing this value in the equation fo
yi(Tl) we finally obtainyi(Tl)5yi(0)5yi

0 . This result is
valid for every unit i and it states that the behavior of th
whole population is periodic with periodTl , and also that
the information of the phase differences at the moment of
individual firings have been stored in the synaptic couplin
Ji j .

In what follows we provide conditions that ensure th
every unit fires once and only once in the periodTl . As
before we identify the index of each unit with the tempo
order in which each of them originally fired; i.e., units fires
at ts and unitp fires attp. For units to fire and unitp not to
7-2
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fire at ts it must simultaneously happen thatys(t
s21)

1gs(t
s2ts21)51 andyp(ts21)1gp(ts2ts21),1 . Obtain-

ing (ts2ts21) from the first equation and inserting the valu
into the second one, we get

yp~ ts21!

gp
,S 1

gp
2

1

gs
D1

ys~ ts21!

gs
. ~5!

But from the construction procedure at the learning sta
we know that for p>s, yp(ts21)5yp(0)1gpts211(s
21)/(n21)(12gpTl) and that forp,s, yp(ts21)5yp(0)
1gpts211(s22)/(n21)(12gpTl)21. The subtraction of
1 in the latter equation arises from the fact that units w
p,s have already fired and have been reset. Notice tha
these units we cannot consider, in the total stimulation, a
of the pulse emitted by itself.

Introducing the condition for the casep>s in Eq. ~5! we
obtain

yp~0!

gp
,S 1

gp
2

1

gs
D S n2s

n21D1
ys~0!

gs
, ~6!

and repeating the procedure for the casep,s we get

ys~0!

gs
.S 1

gp
2

1

gs
D S s2n

n21D1
yp~0!

gp
1S 1

n21D S gpTl2n

gp
D .

~7!

As these relations must hold for everys andp we can inter-
changes andp in Eq. ~6! obtaining forp<s,

ys~0!

gs
,

yp~0!

gp
1S 1

gs
2

1

gp
D S n2p

n21D . ~8!

Combining Eqs.~7! and ~8! we obtain forp,s,

LS~p,s!,
yp~0!

gp
2

ys~0!

gs
,RS~p,s!, ~9!

with

LS~p,s![S 1

gp
2

1

gs
D S n2p

n21D
and

RS~p,s![
n2s

n21 S 1

gp
2

1

gs
D1

1

n21 S n2gpTl

gp
D .

Equation~9! provides the restrictions that must be satisfi
by the initial conditions for the phases in order to ensure t
each unit fires only once during the periodTl . In addition to
requiring Tl.1/gp for every p, Eq. ~9! also requires tha
LS(p,s),RS(p,s), leading to

Tl,
n

gp
2S 1

gp
2

1

gs
D ~s2p!

for everyp,s with p,s.
In the case of identical neurons, Eq.~9! reduces to
03612
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ys~0!,yp~0!,ys~0!1
1

n21 S n2gpTl

gp
D ~10!

for p,s. Equations~9! and ~10! illustrate the fact that the
initial phases att50 will determine the order of firing, and
whenever these equations are satisfied there will not oc
any crossings in which some units might fire a second pu
before the first firing of any other unit.

Before leaving this section we will rewrite Eq.~4!—
dropping for the moment all indices associated w
neurons—using the indexo to refer to the learned sequenc
and the superscript2 to refer to the value just prior to the
arrival of the pulse asH(yo)5y„xo

21G(xo
2)J…2y(xo

2). If
we set H(yo)5k we obtain J as J5@x„k1y(xo

2)…
2xo

2#/G(xo
2), where we have usedx(y)5y21(x). Since

usually uku!1, we can write to first order ink that

J5k
dx~yo!

dy

1

G~xo
2!

5
k

g

F~xo
2!

G~xo
2!

5
k

g

dx~ to
2!

dt

1

G„x~ to
2!…

.

This expression has to be evaluated at the moment prio
the effect of the pulse that we denote byto

2 . This form is
very attractive from the point of view of a possible hardwa
implementation. The mechanism to create the synaptic c
pling requires the measurement of the temporal derivative
the potential~as well as the potential itself, ifGÞ1) just
prior to the arrival of the pulse. Once we have selecteJ
between a pair of neurons on the learning stage, it is fi
afterwards. If we were to start a new sequence from ini
conditions slightly different from those used to buildJ we
would have an equation likeP5y„x21G(x2)J…2y(x2)
with P equal to the impulse to the phasey, in the new tra-
jectory. For inhibitory synapses, whereG(x2)J,0, we ob-
serve thaty8.0 implies thatP,0 everywhere. In addition
P5P(Dy2), where we havey(x2)5y(xo

2)1Dy2 and x2

5xo
21Dx2(Dy2), with Dy2 andDx2 being the perturba-

tions in the values ofy andx prior to the arrival of the pulse
respectively. They are univocally related by Eq.~2! asDy2

5g*
x

o
2

xo
2

1Dx2

1/F(x8)dx8. Besides, notice thatdDx2/dDy2

5(dDy2/dDx2)2151/gF(x2) and y8(x)5g/F(x); there-
fore, we can calculate the important quantityP8
5dP/dDy2 as follows:

P85S F11J
dG~x2!

dx2 Gy8„x21G~x2!J…2y8~x2!D dDx2

dDy2
.

~11!

Considering thatdDx2/dDy2.0 the sign ofP8 depends
on the concavity of the functiony(x). At this point we an-
ticipate that we are interested in situations whereP8,0.
These cases arise when

@11JG8~x2!#y8„x21JG~x2!…,y8~x2!.

For inhibitory synapses we have two important cases to c
sider: ~i! G51 andJ,0 and~ii ! JG(x2),0 andJG8(x2)
,0 as in models such asJG(x)5J(A2x) with A,0 and
7-3
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J.0. In both cases the conditionP8,0 is guaranteed if the
function y(x) has d2y/dx252g/F2F8.0, which leads to
F8,0.

Another useful result is derived when we substitute
values ofy8 anddDx2/dDy2 in terms of the functionF. We
obtain

P85S F11J
dG~x2!

dx2 G F~x2!

F„x21JG~x2!…
21D . ~12!

In the cases where@11JdG(x)/dx#.0, we have that
0.P8.21. This result will be used in the following sec
tion when we demonstrate the convergence of a pertur
firing sequence to the learned one.

When P,0, the conditionP8,0 means that the magn
tude of the pulse gets more negative for neurons receiv
the pulse with a phase closer to threshold as compared
the learned trajectory (Dy2.0) and less negative for neu
rons receiving the pulse with a phase closer to the rese
point as compared with the learned trajectory (Dy2,0).
Both effects contribute to shift the reception phases of
pulses closer to the values of the learned trajectory. Thi
the essence of the argument that proves the stability of
learned trajectory and is in complete agreement with the c
ditions given by@15# for the caseG51. In Sec. III we will
expand the argument and explicitly prove that the lear
trajectory is the unique attractor when the evolution dyna
ics keep the firing order of the neurons equal to that in
learned trajectory.

III. THEOREM OF CONVERGENCE

In this section we demonstrate that the learned traject
according to the prescription given in Sec. II, is an attrac
for the dynamics of the oscillators, provided the firing ord
is maintained equal to that used at the learning stage.
assume for the moment that this is the case and afterw
we find the conditions that have to be met to comply with
conservation of the firing order.

We concentrate on the study of the variableDyi(t j
f)

[yi(t j
f)2yio(to

j ), which measures the departure of the a
tual trajectory of a unit from the learned one, at each fir
event. These individual trajectories, when plotted in the (t,y)
plane, are sets of straight lines associated with the time
tervals during which there is free evolution. These lines w
slopegi end at points with sharp decrements in the varia
y, corresponding either to instantaneous inhibitions from
coming pulses or resettings after firing. Let us focus on t
consecutive firing events taking place at timests and ts11.
To keep track in the demonstration we choose subscript
identify quantities associated with each oscillator and sup
scripts to identify the times at which firing occurs. Thus, f
the actual and learned trajectories of oscillators11 between
times ts and ts11, we can writegs11(ts112ts)1ys11

s 51
andgs11(to

s112to
s)1ys11o

s 51, respectively. Heregs11 and
ys11 are quantities associated with the unit that fires atts11.
Also, ys11

s is the phase value of units11 as a result of the
firing by unit s at timets. When we include in the equation
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the subscripto, we are referring to the same quantitie
at the learned trajectories. Subtracting both equati
we obtain (ts112to

s11)2(ts2to
s)52(ys11

s 2ys11o
s )/gs11

52Dys11
s /gs11.

Let us consider the actual and learned trajectories o
different unit k betweents and ts11. We can writeyk

s11

5yk
s1gk(t

s112ts)1Pk
s11 and yko

s115yko
s 1gk(to

s112to
s)

1Pko
s11 , wherePk

s11 and Pko
s11 are the pulses received b

unit k as the result of the firing events atts11 and to
s11 ,

respectively. In these equations it is useful to single out
phases atts11 and to

s11 before the pulse has taken effec
They are yk

s1125yk
s1gk(t

s112ts) and yko
s1125yko

s

1gk(to
s112to

s). The difference of these phases modula
the effect of the pulsesPk

s11 . Subtracting the equations fo
yk

s11 and yko
s11 , we obtainDyk

s115Dyk
s1gk(@ ts112to

s11#
2@ ts2to

s#)1Pk
s112Pko

s11 . Introducing the value for (ts11

2to
s11)2(ts2to

s) obtained, we have

Dyk
s115Dyk

s2
gk

gs11
Dys11

s 1Pk
s112Pko

s11 . ~13!

By hypothesis we know that oscillators11 fires in the
actual and learned trajectories at firing events11. In both
trajectories it has phase zero after resetting; therefore, it m
hold that

Dys11
s1150. ~14!

We remark that Dyk
s112[yk

s1122yko
s1125Dyk

s

2gk /gs11Dys11
s is the difference in phases of unitk in the

actual and learned trajectories, just previous to the effec
the pulse received atts11.

We havePk
s115Pk(Dyk

s112) as was discussed at the en
of Sec. II. Also, we want to stress that when there is f
connectivity among the neurons, the functional form ofPk
depends only on the identity of the receptor oscilla
throughFk and Gk . On the other hand,Pko

s1151/(n21)(1
2gkTl)[Pko is fixed at the learning stage. Let us definezk

s

5Dyk
s2gk /gs11Dys11

s and the functionTk(z)5z1Pk(z)
2Pko . Notice thatPk(0)5Pko because when there is n
perturbation in the trajectory, the received pulse is equa
the learned one. Therefore, we can writezk

s115Dyk
s11

2gk /gs12Dys12
s11 and using the evolution equation~13! writ-

ten in terms of the functionT(z), we havezk
s115Tk(zk

s)
2gk /gs12Ts12(zs12

s ). To absorb constants we define th
variablesvk

r [zk
r /gk and Rk(x)[1/gkTk(gkx); then we can

write a new evolution equation

vk
s115Rk~vk

s!2Rs12~vs12
s !. ~15!

We verify thatvs12
s1150, as is required by Eq.~14!. Equa-

tion ~15! allows to write vk1
s112vk2

s115Rk1(vk1
s )

2Rk2(vk2
s ).

Now, let us study in more detail the functionRk(x). We
have
7-4
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dRk

dvk
s

5
dTk

dzk
s

511
dPk

dDyk
s112

.

In Sec. II we showed—with the restrictions on functio
G—that 21,dPk /dDyk

s112,0. Therefore, we have th
important result

0 ,
dRk

dvk
s

, 1.

We are interested inuvk1
s112vk2

s11u5uRk1(vk1
s )2Rk2(vk2

s )u.
As 0,dRk /dvk

s,1 and Rk(0)50 we have uRk1(vk1
s )

2Rk2(vk2
s )u,maxk1,k2uvk1

s 2vk2
s u for any vk1

s ,vk2
s . Here

maxk1,k2 means the maximum value over the variab
k1,k2. In effect, for those pairsvk1

s andvk2
s that have oppo-

site sign, we haveuRk1(vk1
s )2Rk2(vk2

s )u,uvk1
s 2vk2

s u and for
those pairs that have the same sign,uRk1(vk1

s )2Rk2(vk2
s )u

,maxk1,k2(uvs11
s 2vk2

s u,uvs11
s 2vk1

s u), where we have used
vs11

s 50. Then, we can writeuvk1
s112vk2

s11u5uRk1(vk1
s )

2Rk2(vk2
s )u,maxk1,k2uvk1

s 2vk2
s u. Following the recursion,

we haveuvk1
n1p2vk2

n1pu,maxk1,k2uvk1
p 2vk2

p u. These relations
show that the difference in the variablesvk

s for a pair of
oscillators, identified with the subindexesk, gets smaller as
the number of firing events, identified with the superindexs,
grows. After a large number of firing events, we finally ha
vk1

` 5vk2
` , for every k1 and k2. But vk1

s 51/gk1Dyk1
s

21/gs11Dys11
s andvk2

s 51/gk2Dyk2
s 21/gs11Dys11

s . There-
fore, in the limit of a large number of firing event
1/gk1Dyk1

` 51/gk2Dyk2
` for every pair ofk1 andk2. Consid-

ering that at each event there is always one oscillator fir
and for this oneDyk

`50, it turns out that after a sufficien
large number of firing events, we must haveDyk1

` 50 for
every oscillatork1 in the population. This demonstrates th
as long as the firing order in the dynamics is equal to t
used in building the synaptic couplings, the learned traj
tory is a unique attractor. Notice that for the case of identi
oscillators, we have the more relaxed conditionuRk1(vk1

s )
2Rk2(vk2

s )u,uvk1
s 2vk2

s u for any vk1
s ,vk2

s , because in this
case, we haveRk1(v)5Rk2(v).

Now we turn our attention to find the conditions that e
sure that the perturbed trajectory preserves the firing or
What is needed is that in the perturbed trajectoryts112ts

.0, when in the learned oneto
s112to

s.0, where the indexs
identifies the oscillators and the indexo signals the learned
trajectory. In addition, it is necessary that once an oscilla
has fired, it will not fire again until the rest of the populatio
have done it.

In what follows we find restrictions for the perturbation
the initial conditions that ensure that the order of firing
preserved in the first cycle. Then we will show that th
condition is obeyed for the rest of the evolution. In fact, w
have gs11(t2ts)1ys11

s 51 and gs11(to
s112to

s)1ys11o
s 51

as the conditions for oscillators11 to fire in both the
learned and perturbed trajectories, respectively. Notice
we have not given the superindexs11 to the time of firing
of oscillators11 in the perturbed trajectory, because we a
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must prove that no other oscillator fires the events11. If we
subtract both equations, we obtaint2ts5to

s112to
s1vs

s ,
where we have usedvs

s52Dys11
s /gs11. Therefore, we can

write the condition fort2ts.0, which means that oscillato
s11 fires after oscillators as

vs
s.2~ to

s112to
s! ~16!

for everyn>s>1. Below we find a condition to prevent tha
any other oscillator fires between oscillatorss ands11 and
in this case we can sett5ts11 and vs

s5(ts112ts)2(to
s11

2to
s) above. Furthermore, we need to supplement this eq

tion with the requirement that after the perturbation, the i
tial condition of oscillators51 is below threshold , ensuring
that it will fire first in the cycle. This means thatt1.0, or
equivalentlyy1

0,1. We haveg1t11y1o
0 1Dy1

051 andg1to
1

1y1o
0 51 as the conditions for firing of oscillators51 in the

perturbed and original trajectories, respectively. Combin
these relations we conclude that if

Dy1
0/g1,to

1 , ~17!

then oscillator s51 fires. If the trajectory is ordered
the quantities vs

s appearing in Eq. ~16! are directly
related to vs

05Dys
0/gs2Dy1

0/g1. In effect, vk
k5Rk(vk

k21)
2Rk11(vk11

k21) for every k. As we mentioned before,vk
k21

50 andR(0)50 and thereforevk
k52Rk11(vk11

k21) for every
k. In addition,vk11

k215Rk11(vk11
k22)2Rk(vk

k22)5Rk11(vk11
k22)

1vk21
k21 . Applying again the recursion formula t

Rk11(vk11
k22), we obtain vk

k52Rk11(Rk11„Rk11(vk11
k23)

1vk22
k22)1vk21

k21
…. We can continue the procedure to obta

finally

vk
k52Rk11„~„•••~„Rk11~vk11

0 !1v1
1
…1v2

2!1•••…1vk22
k22!

1vk21
k21

….

In this expression the operatorRk11 has been appliedk
times. Calling Sk11(x)5@Rk11(x)#21 the inverse of
Rk11(x), we have

vk11
0 5Sk11„Sk11~•••„Sk11~2vk

k!2vk21
k21

… . . . 2v2
2!2v1

1
….

~18!

This expression shows that thevk
k determine thevk11

0 ,
which in turn are related to the perturbations to the init
conditions of the variablesyk11

0 . Also, it is worth noticing
that in the equation forvk

k we can substitute the termsv1
1 as

a function ofR2(v2
0), v2

2 as a function ofR3(v3
0) andv1

1, and
so forth, reaching the conclusion that for an ordered traj
tory vk

k depends onv2
0 ,v3

0 , . . . ,vk11
0 .

Now let us work the condition that no oscillator fires
new pulse before the rest of the population has done it in
first cycle. We know from construction that this is the case
the learned trajectory. Assume that oscillators has fired at
ts,tp and until tp21, the trajectory is ordered with eac
oscillator firing in the same order as in the learned trajecto
For the case of the first firing event it is enough to show t
Eq. ~17! is satisfied. Then assume thatp52. We need that
7-5
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oscillator p52 fires afterp51 and that no other oscillato
that has already fired may fire again betweenp51 and p
52. In this case the only oscillator that has fired iss51. So
we have to satisfy Eq.~16! with s51v1

1.2(to
22to

1) and, in
addition, we require thaty1

2,1 with y1
2[y1(t2). Here t2

represents the time at which oscillator 2 fires. We have th
fore y1

25y1
01g1t21(k51,kÞ1

k51 P1
k21. The subtraction of 1

represents the fact that oscillator 1 has already fired and
been reset once. Also, in the summation we have exclu
self-stimulation and used the fact that up totp21 the firing
sequence is ordered. For the first oscillator the su
mation is null. We can obtain the timet2 from the
equation 15y2

01g2t21(k51
k51P2

k that holds for oscillator 2.
After some algebra we obtain 1/g12y1o

2 /g1.Dy1
0/g1

2 Dy2
0/g2 1 (k 5 1,kÞ1

1 (P1
k 2 P1o

k )/g1 2 (k51
1 (P2

k 2 P2o
k ) /g2.

Using the fact that for ordered firing sequence
(Ps

k2Pso
k )/gs5Rs(vs

k21)2vs
k215vs

k1vk
k2vs

k21, (Pp
k2Ppo

k )
/gp5Rp(vp

k21)2vp
k215vp

k1vk
k2vp

k21 , and Dys
0/gs2Dyp

0

/gp5vs
02vp

0 , we can reduce the summations, ending
with the unequality 1/g12y1o

2 /g1.v1
1 as the condition tha

prevents oscillators51 from firing again before oscillato
p52. Equation ~18! states thatv2

05S2(2v1
1); therefore,

once we have chosenv1
1 that satisfy both restrictions, we ca

find the variablev2
05Dy2

0/g22Dy1
0/g1. As Eq. ~17! shows,

Dy1
0/g1 is already determined when we required that osci

tor s51 fired. We extend the ordered trajectory one mo
pulse by requiring that oscillatorp53 fires after oscillator
s52. Using relation~16! this is equivalent to requiring tha
v2

2.2(to
32to

2). In addition, we need that neither oscillat
s51 nor s52 fires its second pulse before oscillatorp53
fires. This means thatys

3,1 for s51,2 with ys
35ys(t

3).
Here t3 represents the time at which oscillator 3 fire
We have thereforeys

35ys
01gst

31(k51,kÞs
k52 Ps

k21. The
interpretation of the terms is similar to the casep52. We
can obtain the timet3 from the equation 15y3

01g3t3

1(k51
k52P3

k that is satisfied for oscillatorp53. After
some algebra we obtain 1/gs2yso

3 /gs.Dys
0/gs2Dy3

0/g3

1(k51,kÞs
2 (Ps

k2Pso
k )/gs2(k51

2 (P3
k2P3o

k )/g3. Once again
we apply the relations valid for ordered firin
segments (Ps

k2Pso
k )/gs5vs

k1vk
k2vs

k21 , (Pp
k2Ppo

k )/gp

5vp
k1vk

k2vp
k21 . In addition, sinceDys

0/gs2Dyp
0/gp5vs

0

2vp
0 , we can reduce the summations to obtain the rela

1/gs2yso
3 /gs.vs

2 , which prevents oscillatorss51 and
s52 from firing again before oscillatorp53. The procedure
to extend the ordered sequence is direct we proceed
pulse at a time untilp5n by using relation~16! and by
requiring at each new firing event the oscillators that ha
already fired once in the previous ordered sequence no
fire at this event. The relation that we obtain is a general
tion of the cases withp52 andp53 and is given by

1

gs
2

yso
p

gs
.vs

p21 ~19!

for every 1<s,p<n. As the sequence is ordered by co
struction untilp21 we can expressvs

p21 in terms of thevk
k

as
03612
e-

as
ed

-

,

p

-
e

.

n

ne

e
to
-

vs
p215Rs„Rs~•••„Rs~vs

s!1vs11
s11

…1••• !1vp22
p22

…1vp21
p21 ,

where the operatorRs appears (p21)2s times.
As it has been explained, both Eqs.~16! and ~19! are

restrictions for the variablesvk
k5(tk112tk)2(to

k112to
k).

These variables contain the information about the shifts
the firing times along the perturbed trajectory. Then,
could take these variables as free parameters which we
choose to satisfy both set of equations. Once we have
adequate selection for them, the associated perturbation
the initial conditions can be obtained from Eqs.~18! and
~17!. We will show below that once the first firing cycle ofn
firing events is ordered the next cycles are ordered as w
Therefore, the oscillator that fires att5tn11 is the oscillator
with s51. This consideration allows to prove that then vari-
ablesvs

s with 1<s<n are not independent. Let us calcula
vn

n . We use the evolution formula~15! and obtain vn
n

5Rn(vn
n21)2Rn11(vn11

n21). In the second term of the righ
side the subindexn11 must be identified with the index o
the oscillator that fires attn11, which turns out to bes51.
Therefore, we havevn

n5Rn(vn
n21)2R1(v1

n21). The first
term on the right side is null asvn

n2150, which is generally
valid for any term of the formvs11

s . Thus, we havevn
n

52R1(v1
n21). Besides, usingv1

n215R1(v1
n22)2Rn(vn

n22)
and the identity2Rs(vs

s22)5vs21
s21 , valid for every s, we

obtain vn
n52R1„R1(v1

n22)1vn21
n21

…. We continue using
the relation v1

n2s5R1(v1
n2s21)1vn2s

n2s for every s to
obtain vn

n52R1(R1„R1(•••„R1(v1
1)1v2

2
…•••)1vn22

n22
…

1vn21
n21), where the operatorR1 is appliedn21 times. This

relation shows thatvn
n can be determined from then21

values of the previous terms. The following identity is o
tained after adding the variablesvs

s :

(
s51

n

vs
s5(

s51

n

@~ ts112ts!2~ to
s112to

s!#5~ tn112t1!2Tl .

This relation shows that the sum ofvs
s is the perturbation in

the period of the firing cycle. As is evident in relation~18!, it
is not necessary thatvn

n determinesvs
0 with 1<s<n, be-

cause we know by definition thatv1
050. In conclusion, to

obtain an ordered perturbed firing sequence in the first cy
we determineDy1

0 by Eq. ~17!, and for n>s.1 we use
Dys

05gs(vs
01Dy1

0/g1) with vs
0 obtained from Eq.~18! as a

function of thevs
s with 1<s,n that comply with Eqs.~16!

and ~19!.
One question remains to be answered. If the first cycle

n firing events is ordered by construction, can we guaran
that the next firing cycles remain ordered as well? An af
mative answer is necessary to demonstrate the converg
to the attractor. The learned firing sequence is ordered
construction as well as the perturbed firing sequence in
first cycle. Let us look from a different perspective at t
meaning of an ordered firing sequence. The phases of tn
oscillators in the learned trajectory at the initial time areyso

0 .
If there was no interaction between the oscillators, th
would reach threshold at timests f

1 5(12yso
0 )/gs . We call

them ‘‘free evolution times.’’ There is one oscillator that wi
7-6
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have the smallest free evolution time. That one is the firs
fire. This condition can be recast into the expressionts f

1

2tk f
1 ),0 for every kÞs, when oscillators fires first. We

rename this oscillator as number 1. In terms of the phase
the initial time this relation states that oscillator 1 fires firs
(y1o

0 /g12yko
0 /gk)2(1/g121/gk).0 for every kÞ1. Once

an oscillator fires, it sends an inhibitory pulse to the rest
the population, which in turn acquire a new phase:yko

1 . For
the oscillator that has just fired,y1o

1 50. We repeat the rea
soning and verify that oscillator 2 will fire next if the fre
evolution times satisfy (t2 f

2 2tk f
2 ),0 for every kÞ2. This

result is translated in terms of the phases as (y2o
1 /g2

2yko
1 /gk)2(1/g221/gk).0 for everykÞ2. The procedure

is iterated until the pulse emitted attn by oscillator n has
occurred. In general, it can be stated that oscillators fires at
to
s if ( yso

s21/gs2yko
s21/gk)2(1/gs21/gk).0 for everykÞs.

Hereyso
s21 andyko

s21 are the phases of oscillatorss andk just
after receiving the pulse at timeto

s21 , respectively. In the
learned trajectory the firing order is periodic with periodTl ,
and therefore it is not necessary to check the identity of
firing oscillators for the following cycles. Now we repeat th
procedure in a perturbed trajectory that has been constru
as ordered in the first firing cycle. We have that oscillatos
fires at timets because (ys

s21/gs2yk
s21/gk)2(1/gs21/gk)

.0 for every kÞs. If we write ys
s21/gs5yso

s21/gs

1Dys
s21/gs and yk

s21/gk5yko
s21/gk1Dyk

s21/gk and use the
equalityDys

s21/gs2Dyk
s21/gk5vs

s212vk
s21 , we can assure

that oscillators has fired atts because (yso
s21/gk2yko

s21/gk)
1(vs

s212vk
s21)2(1/gs21/gk).0 for everykÞs. Since the

firing order is preserved in the first cycle of the perturb
trajectory, this means that

u~vs
s212vk

s21!u,u~yso
s21/gs2yko

s21/gk!2~1/gs21/gk!u
~20!

for all firing events froms51 to s5n and for allkÞs in the
first cycle. For the case of identical oscillators we ha
u(vs

s211n2vk
s211n)u,u(vs

s212vk
s21)u for segments of the

trajectory already ordered and, therefore, we can use Eq.~20!
to prove that the firing sequence is ordered for the n
cycles as well. For the case of inhomogeneous oscillators
relation between the variablesvk

n1p andvk
p involves a maxi-

mum. To ensure that the perturbed trajectory in the sec
and subsequent cycles is ordered we require, in this case
the perturbations satisfy, in addition to Eqs.~16!, ~17!, and
~19!, the restriction

max
k1,k2

u~vk1
s212vk2

s21!u,u~yso
s21/gs2yko

s21/gk!2~1/gs21/gk!u

~21!

for all k, s with kÞs in the first cycle, where maxk1,k2
chooses the maximum value of a function overk1 andk2.
As before, we can relatevk

s21 to the variablesvp
p , taking

care that whens21,k this can be achieved using Eq.~18!,
obtaining
03612
o
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vk
s215Rk„Sk~•••Sk„Sk~2vk21

k21!2vk22
k22

…2••• !2vs21
s21

…

1vs21
s21

for 1<s21,k<n. In this relation the operatorSk is applied
k2(s21) times. In addition, we have

vk
s215Rk„Rk~•••Rk„Rk~vk

k!1vk11
k11

…1••• !1vs22
s22

…1vs21
s21

for n21>s21>k>1, where the operatorRk is applied
(s21)2k times.

Let us start the second cycle. Attn the phases of the
oscillators areys

n . The next oscillators in firing is that hav-
ing (yso

n /gs2yko
n /gk)1(vs

n2vk
n)2(1/gs21/gk).0 for every

kÞs. In this expression we can replaceyso
n 5yso

0 and yko
n

5yko
0 because the learned trajectory is periodic with per

Tl . Since the first cycle of the perturbed trajectory is o
dered, we can relate thevp

n to the values they had in previou
firings. In particular, we know the important relations f
every s and k uvs

n2vk
nu,maxs,kuvs

02vk
0u for the case of non-

equal oscillators anduvs
n2vk

nu,uvs
02vk

0u for identical oscil-
lators. These inequalities together with Eqs.~21! and ~20!
allow us to write that u(v1

n2vk
n)u,u(y1o

0 /g12yko
0 /gk)

2(1/g121/gk)u for everykÞ1. This inequality shows that
for oscillator s51, the condition to fire first attn11 in the
second cycle is satisfied.

The ordered trajectory now extends fromt50
to t5tn11. To decide which oscillator will fire next
we proceed again to look for the oscillators that
has (yso

n11/gs2yko
n11/gk)1(vs

n112vk
n11)2(1/gs21/gk)

5(yso
1 /gs2yko

1 /gk)1(vs
n112vk

n11)2(1/gs21/gk).0 for
every kÞs. In this relation we have usedypo

n115ypo
1 for

every p and we know that there is an ordered trajectory
to time tn11. For the case of nonequal oscillators w
have u(v2

n112vk
n11)u,maxs,kuvs

12vk
1u,u(y2o

1 /g22yko
1 /gk)

2(1/g221/gk)u and for the case of identical oscillators th
condition is u(v2

n112vk
n11)u,uv2

12vk
1u,u(y2o

1 /g22yko
1 /gk)

2(1/g221/gk)u. These relations are valid for everykÞ2.
Therefore, we have that the inequality that decides wh
oscillator fires is satisfied fors52. This implies that the nex
oscillator to fire attn12 must bes52. It is clear that we can
extend the argument to the rest of the second cycle to d
onstrate that it is also an ordered firing sequence. This p
cedure can be repeated to the next firing cycles as well,
cause as the perturbations get smaller from one cycle to
next, they are unable to modify the results of the inequalit
that determine the firing order in one cycle as compared w
the previous one. In conclusion, if the perturbations are s
that Eqs.~16!,~17!, and~19! are satisfied, the firing sequenc
will keep the order set in the first firing cycle. For the case
identical oscillators this condition is sufficient to have
ordered firing sequence in subsequent cycles as well. Fo
case of inhomogeneous oscillators, Eq.~21! must also be
satisfied to guarantee an ordered firing sequence in post
cycles.
7-7
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IV. APPLICATION TO PESKIN’S NEURONS

In this section we apply the results discussed in previ
sections to the special, but important, case of Peskin’s m
@35#, whereFi(xi)5I i2g ixi andGi(xi)51 for every oscil-
lator. The integration of Eq.~2! gives the phase variableyi
5gi /g i ln„I i /@ I i2g ixi(t)#… and its inversexi5(I i /g i)@1
2exp(2gi /gi yi)#. If the firing threshold isxi5u i , we obtain
the natural frequencygi5g i„ln@Ii /(Ii2giui)#…

21. In addition,
from Eq. ~4! we obtain Hi j „yi(t)…52gi /g i ln„1
2g iJi j /I iexp@gi /giyi(t)#…. If we require thatHi j „yi(t)…5(1
2giTl)/(n21), the synaptic coupling coefficient adopts t
form

Ji j 5H 12expF2g i

gi
S 12giTl

n21 D G J I i

g i
expF2g i

gi
yi

j G .
This expression can be rewritten using thex variable:

Ji j 5H 12expF2g i

gi
S 12giTl

n21 D G J 1

g i

dxi~ t j 2!

dt
. ~22!

As is shown in Eq.~22! for Peskin’s model, the synapti
coupling is proportional to the temporal derivative of t
membrane potential at all orders inJ. For this case the value
of the pulsePk(z) is given by

Pk~z!52lklnH 12expF z

lk
GF12expS 2Pko

lk
D G J ~23!

and the value forRk(z) is

Rk~z!5
z

gk
1

Pk~z!

gk
2

Pko

gk
, ~24!

with lk5gk /gk and Pko5(12gkTl)/(n21) . When we
take the derivative with respect toz, we have dRk /dz
51/@11bk(z)#, with bk(z)5exp(z/lk)(exp@2Pko/lk#21).
SincePko,0, becauseTl.1/gk for everygk , we have that
bk(z).0. We verify that 0,dRk /dz,1 and alsoRk(0)
50. According to Sec. III these are necessary conditions
the stored firing sequence to be an attractor.

We can get an estimation for the speed of convergenc
considering the case whenn is large; i.e.,uPkou!1. In this
condition we can linearize Eqs.~23! and ~24! to obtain
Rk(vk

p)5vk
p(11Pko /lk). The iteration of the operatorRk in

terms of the number of full cyclesNc , made ofn pulses,
gives

~Rk!
Nc~vk

p!5expS 2
Nc

mk
D ~vk

p!Ncn ~25!

with mk5(gk /gk)1/u12gkTl u. For example, for valuesTl

50.1 s, gk525 Hz, g570 s21, and vk
p51 we obtainm

50.23 cycles. This simple estimate suggests that in less
a cycle a perturbed firing sequence can converge to
stored one.

To illustrate the theory we present results from numeri
simulations. We have chosen 100 Peskin’s neurons w
natural frequencies distributed randomly in the interval
03612
s
el

r

by

an
e

l
th
5

Hz to 45 Hz. In Fig. 1 we present the frequencies asigned
each unit. All units have a decay constantg570 s21 and the
threshold to fire isu51 for every oscillator. The firing con-
figuration to be learned will result from the chosen initi
conditions for the variablesx of each unit. These values ar
obtained from the phasesyso

0 that satisfy the constraint
given by Eq.~9! and after the application of the relation th
links eachx and y. The values foryso

0 have been selecte
recursively fromyn

0 to y1
0 as follows:yp

05gp@(12r )RS(p)
1rL S(p)#, where RS(p)5mins,s.p@RS(p,s)1ys

0/gs# and
LS(p)5maxs,s.p@LS(p,s)1ys

0/gs#, starting with yn
050. Here

mins,s.p@f(s)# and maxs,s.p@f(s)# means the minimum and
maximum values for the functionf (s) inside the brackets for
values ofs such thats.p. The constantr is chosen so tha
y1

0,1. In our simulations a value ofr aroundr 50.95 has
proved to be effective in generating initial values forx that
cover most of the interval@0,1). Analogously, the perturbe
firing configuration is the result of perturbations on the init
values for the variablesx. In the simulation, these perturba
tions obey the restrictions imposed by Eqs.~16!, ~17!, and
~19! on the associated initial phase shifts to achieve an
dered firing sequence. Note that we have not imposed
restriction given by equation Eq.~21! for inhomogeneous
oscillators and nevertheless obtain an ordered firing
quence. We have chosenvs

s5k@11r(s)#(to
s112to

s) with
r(s) being a random variable between20.9 and 0.9 andk
negative, with values around20.001 to20.003. In addition,
for this simulation we have chosenDyn

050 which forces
Dy1

052g1vn
n . Both, the learned and perturbed distributio

of initial values forx are shown in Fig. 2 as a function of th
firing order.

As was mentioned before, in this experiment we obtain
ordered firing sequence even though relation~21! is not
strictly satisfied. We can explain this result considering th
in general, uvk1

s 2vk2
s u5uRk1(vk1

s21)2Rk2(vk2
s21)u. When

the functionsRk satisfy additionally thatRk9Þ0, they have
a first derivative that grows or decreases monotonic
In this case we can write uRk1(vk1

s21)2Rk2(vk2
s21)u

,maxk,i,j@zRk(qk,i , j uv i
s212v j

s21u) z#, where maxk,i,j(x) takes

FIG. 1. Oscillator natural frequencies. The natural frequenc
of the oscillators are chosen randomly in the range from 25 Hz
45 Hz. The index on the horizontal axis corresponds to the fir
order.
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the maximum value of its argument with 1<k,i , j <n, and
qk,i , j takes the values 1 or21 depending on the concavity o
the functionRk . We can continue the recursion and write f
an ordered trajectory

uvk1
s211n2vk2

s211nu

,max~ zR„qmax~ uR„qmax~•••max~ zR~quv i
s21

2v j
s21u!z!••• !…u!…u!,

where we have omitted the subindexes of the functionsR,
max andq and these functions are appliedn times. This
relation shows that we can guarantee that the second cyc
ordered if

max„uR~q•••max„uR~quv i
s212v j

s21u!u…••• !u…

,min
j

u~yso
s21/gs2yjo

s21/gj !2~1/gs21/gj !u

for 1<s<n. In the case of Peskin’s neuronsRk9(z)5
21/lkbk(z)/@11bk(z)#,0 for all k and we can chose th
function RM that has the maximum first derivative for neg
tive arguments and write the condensed form

max
i , j

z~RM !n~2uv i
s212v j

s21u!z,min
j

u~yso
s21/gs2yjo

s21/gj !

2~1/gs21/gj !u ~26!

as the restriction to obtain ordered trajectories in the sec
and following cycles. Here maxi,j and minj take the maxi-
mum and minimum values for 1< i , j <n and 1<s<n. This
restriction turns out to be more relaxed than Eq.~21! and in

FIG. 2. xs
0 and xso

0 . The top curve represents the stored dis
bution of values of the variablex for 100 different oscillators at the
initial time. This distribution was chosen to satisfy the orderi
relations for the phases given by Eq.~9!. The lower curve represent
the perturbed initial distribution of values forx for the same popu-
lation. This distribution satisfies the constraints given for the ph
shifts Dys

0 by Eqs.~16! and~19! and restriction~26!. The numbers
on the horizontal axis correspond to the order of firing in ea
cycle. We used oscillators with natural frequencies as in Fig
randomly chosen between 25 Hz and 45 Hz. The values forg andu
for all the population wereg570 s21 and u51 and usedTl

50.1125 s.
03612
is

d

our simulations is satisfied even though relation~21! is
not. We observe that the convergence is very fast to
learned sequence. This is illustrated in Fig. 3, where
plot the logarithm of the average shiftse(Nc)

5A1/(n21)(s51
s5n(xs

nNc2xso
nNc)2. Herexs

nNc5xs(t
(nNc)) and

xso
nNc5xso(to

(nNc)) are the values forx for the oscillator that
fires in the orders evaluated at the firing time of oscillato
that fires at ordern, in different cycles. The subindexo dis-
tinguish between the perturbed and learned firing sequen
In this figure it should be remarked that the rate of conv
gence agrees well with the estimate given by Eq.~25!.

We have performed a series of experiments with frequ
cies randomly chosen in the range@25,30# Hz. In Fig. 4 we
show the initial distributions forx in both the learned and
perturbed trajectories. Both distributions satisfy the order
relations of the theory with the exception of relation~21! but
obeying~26!. We note that the perturbed trajectory converg
to the attractor very fast, as it is shown in part~b! of the
figure.

We have repeated the experiment with the same lear
sequence as in Fig. 5 but, in this case, the perturbed sequ
starts from initial conditions that are a scaled version of
learned ones. The plot of convergence shows that afte
short transient, where the firing order may be upset, the
namics find eventually a path to the attractor. This sugg
that the valley of attraction is larger than the set of trajec
ries complying strictly with the ordering relations. For com
parison we have repeated the experiment but now the
turbed sequence starts from completely random ini
conditions. In Fig. 6 it is shown that in this case the attrac
is never reached. We end the series with an experiment
ried out with identical oscillators having a natural frequen
equal to 25 Hz. In this case we intentionally distort the p
turbed sequence, without disobeying the ordering equati
In Fig. 7 we show the results that confirm that the dynam
flows directly to the attractor right from the beginning.

e

h
,

FIG. 3. Convergence rate. The thin curve represents ln@e(Nc)# as
a function of the number Nc of full cycles. e(Nc)

5A@1/(n21)(s51
s5n(xs

(nNc)
2xso

(nNc))2#. The slope of the thick curve
is 1/mm5(12gmTl)g/gm , with gm the maximum natural fre-
quency, and is a good estimation of the limit rate of convergen
The data are the same as used in Figs. 1 and 2.
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V. DISCUSSION

In the present work we have developed a procedure
store simple periodic firing sequences in a fully connec
set of IF neurons that communicate via instantaneous
inhibitory synapses. The type of neurons are quite gene
however, they need to satisfy certain criteria about the c
cavity of the leak function. In particular, the method is a
plicable to Peskin’s neurons with arbitrary natural freque
cies. We have proved that the stored firing sequence
unique attractor for the dynamics, with an attraction val
that is constituted by firing patterns with a similar firing o
der as the stored sequence. We have provided restriction
the extent of the perturbations in the initial conditions of t
different units, which guarantee that the firing order is p
served at all times during the evolution to the attractor. T
stored firing sequences have precise time relations betw
the firing events of different units. For a model with no tim
delays, as that we have discussed in this paper, this m
that the oscillators are not synchronized in the attractor.
explicitly show a method to use structured inhibitory sy
apses to get stable and general firing sequences in w

FIG. 4. xs
0 and xso

0 and rate of convergence. In~a! each curve
represents the stored distribution of values of the variablex for 100
different oscillators at the initial time. The top curve of this figu
contains the distribution chosen to satisfy the ordering relations
the phases given by Eq.~9!. The lower curve represents the pe
turbed initial distribution of values forx for the same population
This distribution is calculated to satisfy the ordering restrictio
with relation ~26! instead of Eq.~21!. In ~b! we have plotted the
shifts ln@e(Nc)# ~light curve! vs the number of cycles and the the
retical convergence rate~dark curve!. We used oscillators with natu
ral frequencies randomly chosen between 25 Hz and 30 Hz.
values forg and u for the whole population wereg570 s21 and
u51 with Tl50.1072 s.
03612
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each neuron fires once per cycle. In addition, the prescrip
to obtain the synaptic values can be implemented using
first firing cycle. An interesting aspect of the procedure
that the calculation of the synapses is related to the eva
tion of the temporal derivative of the state variable of ea
unit at the moment of the reception of a pulse. An importa
point that is necessary to remark is that in common
proaches, the synaptic couplings are chosen as negative
equal. In these cases, systems of fully connected hom
neous IF neurons with instantaneous communication rea
periodic solution after a transient. A characteristic of th
solution is that the firing times are equally distributed alo
the firing cycle. This necessarily means that when a neu
fires, the others receive the pulse with a different phase. O
erwise, they would fire the next pulse simultaneously as t
have the same natural frequency. These solutions, whose
bility have been the subject of many studies by others,
radically different from the attractor we have discussed
this paper, because it is impossible to get equal values for
Ji j with neurons that have different values for their phase
the moment of the reception of the pulses. Theab initio

r

s

e

FIG. 5. xs
0 and xso

0 and rate of convergence.~a! each curve
represents the stored distribution of values of the variablex for 100
different oscillators at the initial time. The top curve of this figu
contains the distribution chosen to satisfy the ordering relations
the phases given by Eq.~9!. The lower curve represents the pe
turbed initial distribution of values forx for the same population
For this experiment this distribution is simply a scaled version
the learned distributionxs

050.5xso
0 . In ~b! we have plotted the shifts

ln@e(Nc)# vs the number of cycles and superposed for compari
the theoretical rate close to the attractor. We used oscillators
natural frequencies randomly chosen between 25 Hz and 30
The value forg and u for all the population wereg570 s21 and
u51 and usedTl50.1072 s.
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fixation of the values for theJi j is normally done in most of
the work on the subject and therefore might conceal inter
ing phenomena.

For the case of Peskin’s neurons we have provided e
mates for the speed of convergence to the attractor, w
suggests a very fast convergence with rates of less than
pulse per neuron—a full firing cycle — to almost reach t
attractor. This observation is relevant if we were to emplo
model like that proposed for a pattern recognition task. If t
were the case we could get full recognition with one firi
event per neuron. This result is interesting from a neurob
logical perspective because it supports experimental obse
tions in which behavioral responses are reached after
few pulses per neuron@36#. We can think of generalization
of the model to include at least two other aspects~i! commu-
nication delay and pulses of finite width and~ii ! a non-fully-
connected system. In work not presented in this paper
have explored successfully both aspects. It is possible to
corporate synaptic delays if we keep computing the synap
at the moment of reception of the pulse. For the case
pulses with finite width the theory leads to synapses w

FIG. 6. xs
0 andxso

0 and rate of convergence . In~a! each curve
represents the stored distribution of values of the variablex for 100
different oscillators at the initial time. The top curve of this figu
contains the distribution chosen to satisfy the ordering relations
the phases given by Eq.~9!. The lower curve represents the pe
turbed initial distribution of values forx for the same population
For this experiment this distribution has values forxs

0 randomly
chosen in the interval@0,0.9#. In ~b! we have plotted the shifts
ln@e(Nc)# vs the number of cycles and superposed for compari
the theoretical rate close to the attractor. We used oscillators
natural frequencies randomly chosen between 25 Hz and 30
The values forg and u for the whole population wereg570 s21

andu51 with Tl50.1072 s.
03612
t-

ti-
ch
ne

a
s

-
a-
ry

e
n-
es
of
h

efficiencies that depend on time, and the effect of each p
turns out to be convolutions of the products of these syna
efficiencies and the pulse profile. The cases of sparse
nectivity are easily dealt with if we replace 1/(n21)(1
2gsTl) with 1/cs(12gsTl), wherecs is the connectivity of
each neuron with the rest. In numerical simulations n
shown in this work, we have used with success networks
Peskin’s neurons in which each member is connected onl
a second one. Some modifications are necessary to the o
ing preservation relations, though.

One interesting observation is that a perturbed firing
quence that preserves the firing order usually is the resu
initial conditions in the membrane potential that are appro
mately a scaled version of the initial conditions used to g
erate the learned firing sequence. In the language of the v
ables vs

s they can be obtained when we usevs
s5(k21)

3(to
s112to

s) with k.0, and then the new firing interval is
(ts112ts)5k(to

s112to
s). The example presented in Fig.

was obtained by making this type of selection. Thus, it
conceivable that we could use the proposed system to s
the information of external signals in the values of the init

r

n
th
z.

FIG. 7. xs
0 and xso

0 and rate of convergence. In~a! each curve
represents the stored distribution of values of the variablex for 100
different oscillators at the initial time. The top curve of this figu
contains the distribution chosen to satisfy the ordering relations
the phases given by Eq.~9!. The lower curve represents the pe
turbed initial distribution of values forx for the same population. In
this experiment we achieve a very distorted initial distribution th
nevertheless satisfies the restrictions of the theory to give an
dered firing sequence. In~b! we have plotted the shifts ln@e(Nc)# vs
the number of cycles and superposed for comparison the theore
rate close to the attractor. We used oscillators with natural frequ
cies of 25 Hz. The values forg andu for the whole population were
g570 s21 andu51 with Tl50.1048 s.
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conditions of the membrane potentials. The preservation
the firing order, when the initial conditions of the perturb
state are a scaled version of those used in the learning s
assures a recovery of the stored signal, as the dynamic
the network converges to the attractor. A direct applicat
could be in the recognition of images under different lev
of illumination.

A further step to make a model of these IF neurons m
realistic is to incorporate a refractory period after the em
sion of a pulse. As we are working with inhibitory synaps
and the final firing frequencies become smaller than the n
ral values, an incorporation of a refractory period appe
that will not modify substantially the main results. On th
other hand, the refractory period is a manifestation of
true dynamics of the membrane potential and an accept
inclusion may require the use of a more sophisticated mo
for the neuron. Consequently, we have performed sim
tions with oscillators made of patches of Hodgkin-Huxl
membranes@37# and we have been able to force the me
brane to fire periodically with a lower period when stim
lated with an external periodic inhibitory signal, and wi
synapses calculated according to the prescription of this
per, as long as the pulses arrive at times when the m
-

m
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ur
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03612
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nonlinearities that are responsible for the pulse genera
and recovery of the membrane potential have died out
other words, as long as the membrane potential has an
lution closer to a leaky capacitor, the synaptic prescript
that uses only the membrane potential appears to be e
tive. This observation clearly imposes some restrictions
the connectivity of the network. A satisfactory periodic sol
tion can be obtained if each neuron receives pulses wi
time windows located away from the extremes of the firi
period. This in turn may require that each neuron rece
only a few pulses per cycle. In this respect it is important
point out that a reduced connectivity can also improve no
immunity related to random shifts in the firing times. As th
average time differences between two firing events involv
connected neurons increases with reduced connectivity,
noncontrolled time shifts are less likely to upset the firi
order, which is crucial to the convergence to the attracto
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