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Firing sequence storage using inhibitory synapses in networks
of pulsatil nonhomogeneous integrate-and-fire neural oscillators
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We discuss a nonhomogeneous population of pulsatil integrate-and-fire neural oscillators, coupled through
purely inhibitory synapses. For instantaneous communication, we provide a strategy to generate synaptic
couplings to obtain simple periodic and stable firing patterns. We provide restrictions under which each stored
firing pattern is a unique attractor for the population dynamics. In the case of Peskin’s leaky integrator we show
results obtained from numerical simulations.
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[. INTRODUCTION an homogeneous population of IF neurons. They studied in
detail coherent and noncoherent states, their dependence on
There has been much interest on the study of systems dfie quality of the excitation — whether excitatory or inhibi-
integrate-and-fir¢IF) neurong1—6]. This is mainly because tory —, as well as the delays of communication[21] they
the individual description of each unit can be simply accom-study the conditions for self-sustained firing in populations
plished through the use of one differential equation withoutof IF neurons. Hopfield and Hef22] study the potentialities
losing the key aspects of neuron behavior, with the emphasi@f systems of homogeneous IF neurons to perform fast com-
placed in the connectivity and interactions of large numbePutations. These authors work in detail the case of the weak
of units. It is expected that the behavior of systems made dfaKY integrator with excitatory interactions. Recent findings
many of these simplified model neurons can shed light intd"n the increased computational capabilities of pulsed_neural
phenomena that persist in systems of more realistic and co \etworks Of the IF type havc_a_promoted new efforts In the
plex neurons. The type of behavior studied in this paper hagnderstandmg of their C?pab"'t'¢.§3]- A recent competing
-model for the IF neuron is the spike response model of Ger-

been touched before in discussions of synchronization ineret al.[24], which also simplifies the description of each

neural gssemblies. Experimental evidence S.UQQEStS that SOM&uron to one integral equation with the advantage that the
neurobiological processes have as a crucial ingredient thﬁefractory period can be naturally included. Using this

synchronized firing of groups of neurofie-14]. These in-  oqe| recent advances in the detailed study of coherence
triguing phenomena have stimulated theoretical work byyng incoherence in neural assemblies have been possible
many authors. Mirollo and Strogaf25] were able to dem- [25_27. Another source of interest in the study of the gen-
onstrate that fully connected homogeneous systems of rath@fation of stable firing structures is the mounting experimen-
general IF oscillators have the tendency to spontaneoushy| evidence showing that neural coding in some systems
synchronize when the communication among oscillators igippears to be linked to precise timing information on spike
pulsatil, instantaneous, and excitatory. Kuramid6] intro-  events rather than on coarse rate valizs-34.
duced a phase model for each oscillator and was able to The aim of the present paper is the study of conditions
study synchronization as a result of Hopf bifurcations in anthat must be met by the synaptic couplings in populations of
evolution equation. His formulation also considered refrac4F neurons in order to generate repetitive and structured fir-
tory periods and noise. The case of synchronization withing patterns of simple period, in which one neuron fires once
inhomogeneous |IF neurons with instantaneous excitatorper cycle. This feature differentiates our approach from most
pulsatil communication was studied by Tsodyddsal. [17]. of the work mentioned above on pulsatil IF neurons, gener-
These authors showed that even in the case of weak interagHy dealing with generic synaptic couplings. We consider
tions in inhomogeneous systems, full synchronization wasnly the case of instantaneous and inhibitory interactions, but
incomplete and a finite population of unlocked neurons perincluding nonhomogeneous populations of IF neurons of a
sisted. Another recent study of synchronization with inhomo-airly general type. We find the necessary restrictions on the
geneous populations of IF neurons is the work of Senn andynamics that allow the synaptic couplings to store the in-
Urbanczik[18], where synchronization of similar nonleaky formation on the firing patterns. These patterns turn out to be
IF neurons with excitatory interactions is discussed. In parattractors for that dynamics. In this respect we are able to
allel, there has been interest in noncoherent firing states @xtend the convergence conditions of Mirollo and Strogatz
systems of IF neurons. Abbott and van VreeswijR] with a  [15] to the case of nonhomogeneous populations and inhibi-
mean field approach have studied the stability of the noncotory synapses. The paper is organized as follows. In Sec. Il
herent states and the influence of noise. A work along theve formulate the model and provide the conditions under
same lines has been carried out by van Vrees{@{}, with  which the synaptic prescription can lead to stable firing pat-
terns. In Sec. Il we explicitly demonstrate the theorem of
convergence to the attractor. In Sec. IV we illustrate the ana-
*Electronic address: imatus@dfi.uchile.cl lytical results with the use of Peskin’s mod&5] and pro-

1063-651X/2002/663)/03612712)/$20.00 66 036127-1 ©2002 The American Physical Society



IVAN J. MATUS BLOCH AND CLAUDIO ROMERO Z. PHYSICAL REVIEW E66, 036127 (2002

vide results from numerical simulations. Finally, in Sec. V Equation(3) shows that each unit evolves freely between
we discuss the results. firing events with constant phase velocitigs In addition,
the effect of each pulse sent by an oscillator depends on the
Il. MODEL value of the phase at the instant it is received. Now, we are in
a situation to write down the prescription to store phase in-
formation in the synaptic couplingy; .

Assume that we want the whole population to fire peri-
dx N o_dically with a common period'|_ but preserve the phase
E:Fi(xi(t))JFGi(Xi(t))jZl Z Jijé(t—tjf). (1) dlﬁerenf:es betweep firings of d|ffereont units. .We start-the

population at=0 with phasey;(0)=y; . There is one unit
that will fire first at timet'. Rename this unif=1. All the
other units have phases less than 1. After firing, yiritl

Let us start with the description of a network of integrate-
and-fire oscillators with instantaneous interactions,

In Eqg. (1) x(t) is a dynamic variable associated with oscil-
latori. In the usual interpretations it corresponds to the mem its ph h . i b
brane potential of the given neural oscillator. The functionre,setS its phase to zero. The synaptic couplifigsare ob-

o . . 1
Fi(x;(t)) drives oscillatori to fire in the absence of mutual tiuned from unitj =1 to the rest IMposing thatt (y(t )).
interactions. Firing occurs whex(t)= 6;, where 6; is the =(1-04T)/(n—1). Here the subscripk labels each unit

firing threshold of oscillatoi. Once a given unit fires, its Other thani=1. Now apply the effect of the pulse from unit

dynamic variablex is immediately reset to zero. Simulta- j=1 to the rest, using the calculated synaptic coefficient. It

neously, the effect of the firing is sensed by the rest of thdS cléar that the net effect on every unit is an impulse of
population as impulses to their respectivdhe second term Magnitude (£gyT)/(n—1). If T, is chosen such thal,

on the right-hand side of Eq1) represents the net effect of ~ 1/dk for every unitk, the synapses are inhibitory. After
the firings of all the oscillators connected to uiniThe sum-  resetting of the unif=1 and the instantaneous phase decre-

mation overj considers the indices of the rest of the popula-Ments of the other units have taken place, the whole popula-
tion and the summation ovépicks up their respective firing tpn cpntmugs their free eyolut!on to threshold until a second
timestjf. The effect of each impulse received by unind gmt f|res_ att“. Rename this um,t=_2 and calculateza synap-
emitted by unitj is weighed by! the product of the constant fiC COUPIiNgJy, to every other unik from Hya(yi(t)) = (1
synaptic couplings);; and the functiorG;(x;(t)). When the —gkT1)/(n—1). As before, unif =2 is reset to zero and we
mutual interactions are inhibitory the product is negatig. apply the pulse from=2 weighed byJ,,. The net effect on

is null if unit i does not receives pulses from ujitin the ~ €VEry unit that is not firing is an inhibitory pulse of magni-
absence of mutual interactions, all the synaptic couplings ard€ (1~ 9kTi)/(n—1). The series of firing events and cal-
null. In this case the oscillators fire periodically with a period CUlations ofJy; continue until every unit has fired once, i.e.,
that depends on the functieh(x;(t)). As we require that the the last pulse is emitted at by unitj=n. In the construc-
units raise their dynamic variablesrom rest, taken as zero, 10N 0f Ji;, it is crucial that all units fire once and only once
to the threshold®>0 it is necessary tha(x;(t))>0 when N the per|o<_jT| - This |mpé)ses some restrictions on the val-
0<x;(t)<#6; . Anticipating events of hyperpolarization that Ues for the initial phasegp . _

occur when the effect of the inhibitory interactions may drive e can consider the procedure described above as a learn-
x:(t) under zero we require th&(x;(t))>0 for all range of ~ INg stage. Notice that after this stage, urhis received a net

values ofx;(t) under the thresholds. effect resulting from ther{—1) pulses from the rest of the
To proceed further we make a usual change of variableBoPUlation, whose magnitude is equal ton—1)(1
and definey;(t) as the phase of unitas follows: —giT))/(n—1)=(1-g;T). The net phase change of unit

after the periodT, is y;(T))=g;(T,—t")+(n—i)/(n—1)(1
xi(® dx’ —g;T)), where we have used the fact that after the firing of
yi(t)zgif —. (2 uniti att' its phase is reset to zero; consequently, after that
o Fi(x') instant there aren—i other firing events, each generating
. impulses of size (+g;T;)/(n—1) to uniti. We can deter-
In Eq._(2) the constangi_allows t(_) normalizey;(t) su5:1r1 mine t from the conditionyi(t‘)_=yi(0)+giti+(i ~1)/(n
as (,yi(t)_l when xi(t)—Hi. This means thatgi _1)(1_giTI):1v which givest'=[1—yi(0)—(i _1)/(n
=JdX'/Fi(x). The constantg; correspond to the natural —1)(1—g,T,)]/g;. Replacing this value in the equation for
or intrinsic frequencies of each unit. &5(x’')>0 the phase y,(T,) we finally obtainy;(T,)=y;(0)=y°. This result is
yi(t) is univocally defined fromx;(t). On the other hand, valid for every uniti and it states that the behavior of the
dy;(t)/dt=[g;/Fi(x(t))][dx (t)/dt] . These results allow whole population is periodic with period;, and also that
to recast Eq(1) as the information of the phase differences at the moment of the
dyi(t) individual firings have been stored in the synaptic couplings
yi(t

N
T gD D Hymitat—th, @
dt j=1 f

In what follows we provide conditions that ensure that
every unit fires once and only once in the peribd As

where before we identify the index of each unit with the temporal
order in which each of them originally fired; i.e., usifires
Hij (yi(D))=yi(xi() + G (x(1)Jij) —yi(xi(t)).  (4) att® and unitp fires attP. For units to fire and unitp not to
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fire at t8 it must simultaneously happen that(t5 1) 1 [n—g,T,
+gg(t5—t5" 1) =1 andy,(t5 1) +g,(t°—t5" 1) <1 . Obtain- Ys(0)<yp(0)<ys(0)+ ﬁ( g (10
ing (t5—t5~ 1) from the first equation and inserting the value P
into the second one, we get for p<s. Equations(9) and (10) illustrate the fact that the
1 1 initial phases at=0 will determine the order of firing, and
Yot )< 1 i) +y3(t ) (5)  Whenever these equations are satisfied there will not occur
9p Op Us gs any crossings in which some units might fire a second pulse

_ _ before the first firing of any other unit.
But from the construction procedure at the learning stage, pgefore leaving this section we will rewrite Eq4)—
-1y — -1 )
we know that for p=s, yu(t° )—yp(O)t_gftS +(S  dropping for the moment all indices associated with
—1)/(n=1)(1—-g,T)) and that forp<<s, y,(t> ) =Yyp(0)  npeurons—using the indexto refer to the learned sequence

+gpt> 1+ (s—2)/(n—1)(1-g,T)— 1. The subtraction of 414 the superscript to refer to the value just prior to the
1 in the latter equation arises from the fact that units with, iyl of the pulse asl(y,) =y(x; + G(x-)d)—y(x2). If
0. o (o] o/"

p<s have already fired and have been reset. Notice that f _ . _ v(x-
these units we cannot consider, in the total stimulation, a uni eiset H,(y°) «we obtain J as ‘J_ [ng y(x.o))
=X, J/G(X,), where we have used(y)=y “(x). Since

of the pulse emitted by itself. . ) .
Introducing the condition for the cage=s in Eq. (5) we usually|k|<1, we can write to first order i that

obtain dx(ys) 1k F(G) wdxt)) 1
=K — =— — = — .
yp(0)<(i_ 1 (n—3> RZCN ©) dy G(x,) 9G(x;) 9 dt Gxt,))
9p Jp Os n—-1 Os . . .
This expression has to be evaluated at the moment prior to
and repeating the procedure for the cases we get the effect of the pulse that we denote fjy. This form is
very attractive from the point of view of a possible hardware
yS(O)> 1 i)(s—n) Yp(0) +( 1 )(ngl_”) implementation. The mechanism to create the synaptic cou-
Os gp Os/\N—1 9p n—1 9 /| pling requires the measurement of the temporal derivative of

the potential(as well as the potential itself, &+ 1) just
prior to the arrival of the pulse. Once we have selecied
between a pair of neurons on the learning stage, it is fixed
afterwards. If we were to start a new sequence from initial
conditions slightly different from those used to buildve
0 0 1 1\/n-
Ys(0) sl )+< )( p)

As these relations must hold for evesyandp we can inter-
changes andp in Eq. (6) obtaining forp=<s,

(8  would have an equation lik€=y(x™ +G(x )J)—y(x")
with P equal to the impulse to the phagein the new tra-
jectory. For inhibitory synapses, whe@&x )J<0, we ob-
serve thaty’ >0 implies thatP<<0O everywhere. In addition,

Os gp Os gp n—-1/°

Combining Eqgs(7) and(8) we obtain forp<s,

¥p(0)  y&(0) P=P(Ay~), where we have/(x™)=y(X,)+Ay  andx"
Ls(p,5)<—g 7 <Rs(p,s), (9 =x,+Ax (Ay"), with Ay~ andAx~ being the perturba-
P s tions in the values of andx prior to the arrival of the pulse,
with respegtive[y. They are univocally related by ER) asAy™
1 1\/n-p =g fi‘f“ 1/F(x')dx’. Besides, notice thalAx /dAy~
'—s(pys)5<g—p_g_s>(—n_1) —(dAy~/dAX") " t=1/gF(x") andy’ (x)=g/F(x); there-
fore, we can calculate the important quantit?’
and =dP/dAy~ as follows:
n-s(1 1 1 n—ng|) dG(x) dAX™
R S)=——-7+|—-——|+—— i r_ 1 (v — ol (v—
s(p.s) n—1(gp gs) n—l( 9 P ( 1+I——|y' (X +G(x)I)—y'(x7) day"
11

Equation(9) provides the restrictions that must be satisfied
by the initial conditions for the phases in order to ensure that - copsjdering thatdAx/dAy~>0 the sign ofP’ depends
each unit fires only once during the peridd In additionto 4 the concavity of the functiog(x). At this point we an-
requiring T,>1/g,, for every p, Eq. (9) also requires that icipate that we are interested in situations where<0.

Ls(p,s)<Rs(p,s), leading to These cases arise when
n 1 1 =\ Ty~ . L o—
T|<g__(g__g_)(s_p) [14+3G' (x )]y’ (X~ +IG(X )<y’ (x").
S
P P For inhibitory synapses we have two important cases to con-
for everyp,s with p<s. sider: (i) G=1 andJ<0 and(ii) JG(x~)<0 andJG'(x")
In the case of identical neurons, E§) reduces to <0 as in models such a’¥G(x)=J(A—x) with A<0 and
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J>0. In both cases the conditid?’ <0 is guaranteed if the the subscripto, we are referring to the same quantities
function y(x) hasd?y/dx?=—g/F?F'>0, which leads to at the learned trajectories. Subtracting both equations

F'<0. . . . we obtain €1—t3") = (1= t3) =~ (Y. 1~ V51 10)/Ost1
Another useful result is derived when we substitute the= —AyZ, /g, 4.
values ofy” anddAx™/dAy™ in terms of the functiorF. We Let us consider the actual and learned trajectories of a
obtain different unit k betweent® and t5"1. We can writey;'*
) ) =Y+ gt -t + PP and ypst=yRot oty - t))
pro| |14 JdG(x7) F(x™) 1 (12 +Pyit, wherePg™t and P§;* are the pulses received by
B T dx [FOxC+IG(x)) ' unit k as the result of the firing events &t'! and t3**,

respectively. In these equations it is useful to single out the

In the cases whergl+JdG(x)/dx]>0, we have that Phases at>"! andt"* before the pulse has taken effect.
0>P’>—1. This result will be used in the following sec- They are yi"* =yp+g(t*"'=t°) and yi,' =Yg,
tion when we demonstrate the convergence of a perturbedt g, (t5°1—t5). The difference of these phases modulates
firing sequence to the learned one. the effect of the pulseB}*'. Subtracting the equations for

When P<0, the conditionP’ <0 means that the magni- y$** and y$i', we obtainAy$  =Ayi+g,([t5F1—tS"1]
tude of the_pulse gets more negative for neurons receivir)g[ts_tg]” PS*1— Pl Introducing the value fortf™?
the pulse with a phase closer to threshold as compared with {+1) _ (ts_t%) optained, we have
the learned trajectoryAy” >0) and less negative for neu-
rons receiving the pulse with a phase closer to the resetting
point as compared with the learned trajectoryy( <0). AySTi=AyS— iAy;ﬁ Pytl-pgit. (13)
Both effects contribute to shift the reception phases of the Os+1
pulses closer to the values of the learned trajectory. This is
the essence of the argument that proves the stability of the By hypothesis we know that oscillater 1 fires in the
learned trajectory and is in complete agreement with the conactual and learned trajectories at firing evertl. In both
ditions given by[15] for the caseG=1. In Sec. Ill we will  trajectories it has phase zero after resetting; therefore, it must
expand the argument and explicitly prove that the learnethold that
trajectory is the unique attractor when the evolution dynam-
ics keep th_e firing order of the neurons equal to that in the Aysti=o. (14)
learned trajectory.

s+1— s+1—

We remark that Ay;'lT=yittt—ysitT=Ays
—0x/ds11AYS, 4 is the difference in phases of uitin the

In this section we demonstrate that the learned trajectongctual and learned trajectories, just previous to the effect of
according to the prescription given in Sec. Il is an attractothe pulse received L
for the dynamics of the oscillators, provided the firing order We haveP} =P, (Ays™!") as was discussed at the end
is maintained equal to that used at the learning stage. Wef Sec. Il. Also, we want to stress that when there is full
assume for the moment that this is the case and afterward®nnectivity among the neurons, the functional formPgf
we find the conditions that have to be met to comply with thedepends only on the identity of the receptor oscillator

IIl. THEOREM OF CONVERGENCE

conservation of the firing order. throughF, andG,. On the other hand?ﬁgl=1/(n— 1H)(1
We concentrate on the study of the variabkyi(tjf) —gyT))=P,, is fixed at the learning stage. Let us defaje

Eyi(tjf)—yio(t{,), which measures the departure of the ac-=Ay;—g,/gs;1Ays,; and the functionT,(z) =z+ Py(2)

tual trajectory of a unit from the learned one, at each firing— P,,. Notice thatP,(0)=P,, because when there is no
event. These individual trajectories, when plotted in thg)(  perturbation in the trajectory, the received pulse is equal to
plane, are sets of straight lines associated with the time inthe learned one. Therefore, we can wrizéJfleyﬁ+1

tervals during which there is free evolution. These lines with—g, /g, 2Ay§i§ and using the evolution equati¢hd) writ-

slopeg; end at points with sharp decrements in the variablggpn in terms of the functio(z), we havezﬁ“sz(zﬁ)
y, corresponding either to instantaneous inhibitions from in-_ 9k/Ger2Tes2(Z5, ). To absorb constants we define the
S S S :

coming pt)_ulsi.s.or resetttlngiskgﬂer fl'”ng' Iﬁtnt:g fo%uti +oln tWc{/ariabIeSz)[(E z/9, and R(x)=1/9, T« (gxX); then we can
consecutive firing events taking place at timésan . write a new evolution equation

To keep track in the demonstration we choose subscripts to
identify quantities associated with each oscillator and super-

scripts to identify the times at which firing occurs. Thus, for v =R(0R) ~ R 2(032). (15
the actual and learned trajectories of oscillaerl between

times t* and t5*1, we can writegg, (t5"1—t5)+ys, ;=1 We verify thatv$2=0, as is required by Ed14). Equa-
andgg, (57 1—t3)+yS, =1, respectively. Herg,,; and tion (15 allows to write v§; —vis =Ru(v)
Ys.1 are quantities associated with the unit that fires at. —Rix(vy)-

Also, yz, ; is the phase value of unit+1 as a result of the Now, let us study in more detail the functid®(x). We

firing by units at timet®. When we include in the equations have
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dRe di_l
dvy dz

dPy
dAystt

In Sec. Il we showed—with the restrictions on function
G—that —1<dP,/dAy;"*~<0. Therefore, we have the
important result

dRq

S
dl)k

0< < 1.

We are interested it *—vis *| =R (vi1) — Ria(viy)].

As 0<dRc/dvy<1l and R(0)=0 we have |Ry(v;;)
— Ria(vio) [ <mMaXq olvis —vk,| for any wvyy,vg,. Here

maxqk, mMeans the maximum value over the variables

k1k2. In effect, for those pairsy, andvy, that have oppo-
site sign, we havéRy;(vy;) — Rea(vio) [<|vRy— vi,| and for
those pairs that have the same SigR,1(v;) — Rio(vi,) |
<maXqa([vss1—vieal,[ve 1~ vRal), Where we have used
v:,,=0. Then, we can write|vi; —vi;Y=|Ra(vEy)
—Ry2(v o) | <maXg kol v —vio|. Following the recursion,
we havelvy, P— v, Pl <maxq kolv —vl,|. These relations
show that the difference in the variable§ for a pair of
oscillators, identified with the subindex&sgets smaller as
the number of firing events, identified with the superindex

PHYSICAL REVIEW B6, 036127 (2002

must prove that no other oscillator fires the eventl. If we
subtract both equations, we obtain-t5=t5"1—t3+p$,
where we have used=—Ayz, ,/gs, 1. Therefore, we can
write the condition fott —t*>0, which means that oscillator
s+1 fires after oscillatos as
ve>—(tg - 15) (16)
for everyn=s=1. Below we find a condition to prevent that
any other oscillator fires between oscillaterands+1 and
in this case we can sgt=t"* and = (t5"1—t5) — (15!
—t3) above. Furthermore, we need to supplement this equa-
tion with the requirement that after the perturbation, the ini-
tial condition of oscillators=1 is below threshold , ensuring
that it will fire first in the cycle. This means that>0, or
equivalentlyy?<1. We haveg,t*+y$,+Ay9=1 andg;t}
+yJ,=1 as the conditions for firing of oscillats= 1 in the
perturbed and original trajectories, respectively. Combining
these relations we conclude that if
Ay2lg; <t (17)
then oscillators=1 fires. If the trajectory is ordered,
the quantitiesv? appearing in Eq.(16) are directly
related tov2=Ay%g—Ay%g;. In effect, vE=R (v )
—Ry.1(vf7}) for every k. As we mentioned before;f ™!

grows. After a large number of firing events, we finally have =0 andR(0)=0 and therefore = — Ry 1 (v, 1) for every

Va=Uge, for every k1 and k2. But vy, =1/gnAye,
—1/gs1 1AY<. 1 andvi,=1/g,, Ak, — 195y 1Ay, 4 - There-
fore, in the limit of a large number of firing events,
g Ay, = LgwAy,, for every pair ofkl andk2. Consid-

k. In addition, v 1= Ry, 1(vi5 D) — R0k~ ) =Ry 105
+v[§j. Applying again the recursion formula
Re:1(vi:5), we obtain vii=—Rys 1(Ris 1(Ri 1 (05 3)

+vk72)+vk”1). We can continue the procedure to obtain

to

ering that at each event there is always one oscillator firindinally

and for this oneAy, =0, it turns out that after a sufficient
large number of firing events, we must hadg,;=0 for

every oscillatork1 in the population. This demonstrates that
as long as the firing order in the dynamics is equal to that

vk= R 1(C¢ - (Ris 2(vie ) oD +05) + - ) +ui5
k-1
k-1)-

used in building the synaptic couplings, the learned trajeciy this expression the operat®,.,,; has been applied
tory is a unique attractor. Notice that for the case of identicaljpes. calling Se 1(X)=[Re:1(x)]"L the inverse of

oscillators, we have the more relaxed conditi®y(v;)
—Rio(vip)|<|vi,—vi,| for any vy, ,vg,, because in this
case, we hav®,(v) =Ry (v).

Now we turn our attention to find the conditions that en-
sure that the perturbed trajectory preserves the firing order.

What is needed is that in the perturbed trajecttyy*—tS
>0, when in the learned ong"*—t3>0, where the indes
identifies the oscillators and the indexsignals the learned

Re+1(X), we have

VRe1= Ser 1S (- (Sera(—v) —viCD . —v5) —vD).
(18)

This expression shows that thef determine thev, ,,
which in turn are related to the perturbations to the initial
conditions of the variableg, ;. Also, it is worth noticing

trajectory. In addition, it is necessary that once an oscillatothat in the equation fop we can substitute the terneg as

has fired, it will not fire again until the rest of the population
have done it.
In what follows we find restrictions for the perturbation in

the initial conditions that ensure that the order of firing is

a function ofR,(v3), v3 as a function oRs(v3) andv], and
so forth, reaching the conclusion that for an ordered trajec-
tory vy depends om$,v3,... vp, ;.

Now let us work the condition that no oscillator fires a

preserved in the first cycle. Then we will show that this new pulse before the rest of the population has done it in the
condition is obeyed for the rest of the evolution. In fact, wefirst cycle. We know from construction that this is the case in

have g, 1(t—t%) +y2, ;=1 andgs, 1 (t5" ' —t5) +y3. 1,=1
as the conditions for oscillatos+1 to fire in both the

the learned trajectory. Assume that oscillatohas fired at
tS<tP and until t’~ 1, the trajectory is ordered with each

learned and perturbed trajectories, respectively. Notice thaiscillator firing in the same order as in the learned trajectory.

we have not given the superindex 1 to the time of firing

For the case of the first firing event it is enough to show that

of oscillators+ 1 in the perturbed trajectory, because we alsoEg. (17) is satisfied. Then assume that2. We need that
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oscillatorp=2 fire_s afterpzl_ and that no other oscillator P 1=R (Ry(- - - (Ry(v) +viihH+-- ')+US:§)+UB:1’
that has already fired may fire again betwgenl andp
=2. In this case the only oscillator that has firedisl. So  where the operatdRg appears |j—1)—s times.
we have to satisfy Eq(16) with s=1v1>—(t2—t2) and, in As it has been explained, both Eq4.6) and (19) are
addition, we require thay?<1 with y?=y,(t?). Heret?  restrictions for the variablesf= (tx*1—t")—(t5**—tf).
represents the time at which oscillator 2 fires. We have therefhese variables contain the information about the shifts in
fore Yi:y(l)+91t2+2l|§:ik¢1pli_1- The subtraction of 1 the firing times along the perturbed trajectory. Then, we
represents the fact that oscillator 1 has already fired and h&9uld take these variables as free parameters which we can
been reset once. Also, in the summation we have excludeghoose to satisfy both set of equations. Once we have an
self-stimulation and used the fact that uptfo ! the firing ~ adequate selection for them, the associated perturbations to
sequence is ordered. For the first oscillator the sumthe initial conditions can be obtained from Ed48) and
mation is null. We can obtain the t|m¢2 from the (17) We will show below that once the first fll’lng CyCIe of
equation = y9+g,t2+ =K=1PX that holds for oscillator 2. firing events is ordered the next cycles are ordered as well.
Therefore, the oscillator that fires att" ! is the oscillator

ith s=1. This consideration allows to prove that theari-
— AY9/Go + - 14e1 (P~ Po)/gr — iy (PE — Ph)/gp. MU S= e ;
Using the fact that for ordered firing sequences,aEIeSUS with 1<s<n are .not independent. Let us c_alcglate
(PK=PX)/gs=R(v} 1) —ok t=pk pkopk 1 (PE_PEO) Up- W(na_luse the e;ﬂutmn formulgl5) and obtain Un

k_ k-1 0 =Rn(vy )—Rn+1(vnhy1)- In the second term of the right

19p=Ry(vs N —vs t=vi+vi—vs ", and AyYgs—Ay) _ _ > second te _
/9p=vs—vg, we can reduce the summations, ending upS|de the subindern+ 1 must be identified with the index of

i : +1 i —
with the unequality I;—y2,/g;>v! as the condition that the oscillator that flresnatt” , \r:v_hllch turnsnf)ijt to bes—_l.
prevents oscillatos=1 from firing again before oscillator Therefore, we ha_vevf_‘:R”(U“ _)1_R1(vl. )'. The first
p=2. Equation(18) states thatvg=82(—v}); therefore, term on the right side is null as, . =0, which is genera{l1ly
once we have choseri that satisfy both restrictions, we can valid for ﬁqy term of the ,forT_}fH' Thnu_sz, we ha?f')zn
find the variablev5=Ay5/g,— Ay{/g,. As Eq.(17) shows, ~Ri(og 7). BeS|desS,7uzsmg)§71 =Ru(vg ) —Ra(vn )
AyJ/g, is already determined when we required that oscilla-2"d .the ,']d_eit'ty_ Rs(vn52)=vns:11, valid for Cverys, we
tor s=1 fired. We extend the ordered trajectory one morePPt@in vn= Fi{(fl(vl n)iff—l)'nfvsve continue  using
pulse by requiring that oscillatqp=3 fires after oscillator the relation v "=Ry(v; )+Unf§ for2 every sitzo
s=2. Using relation(16) this is equivalent to requiring that obtaml vn= ~Ry(RiRy(- - - (Ry(v1) +v3)- - ) Tv7Z5)
v2>— (t3-t2). In addition, we need that neither oscillator +vn_1). Where the operatd®; is appliedn—1 times. This
s=1 nors=2 fires its second pulse before oscillafpr 3 relation shows thatzﬂ can be determined from the—1
fires. This means thay§<1 for s=1,2 with ygzys(ﬁ)_ values of the previous terms. The following identity is ob-
Here t3 represents the time at which oscillator 3 fires.tained after adding the variables:
We have thereforey3=yd+gt®+=(2%, . PE—1. The . .
interpretation of the terms is similar to the cgse 2. We s_ s+1_gsy_ 45+t1_ 48\ gn+1l_ 11y _
can obtain the timet® from the equation %y3+gst® 2—“1 Us_g’l Lt D=t~ 1= t)= T
+3K22p% that is satisfied for oscillatorp=3. After
some algebra we obtain diy-y3/g.>AyYg.—AyYgs This re!ation shovyg that the sum of i_s the_perturt_)ation_ in
+32_ 1,0 o(PE—PEIg,— S, (P5—PX,)/gs. Once again  the period of the firing cycle. As is evident in relatitt), it
we apply the relations valid for ordered firing IS Not necessary that, determinesvs with 1<s=<n, be-
segments RX—PX)/gs=vk+vf—0vk T, (p';_pgo)/g cause we know by definition.that(l’zo. In co_nclusio.n, to
=vk+vE—UE_l- In addition, sinceAyglgs—Ayg/gp=v§ obtain an o'rdereg perturbed firing sequence in the first cycle
—vg, we can reduce the summations to obtain the reIatioN"eOdete”%meA%l by EQ. (107). and forn=s>1 we use
1/gs—y3/gs>v2, which prevents oscillatorss=1 and AYs=0s(vs+Ayi/g:) with vg obtained from Eq(18) as a
s=2 from firing again before oscillatgy=3. The procedure function of thevg with 1<s<n that comply with Eqs(16)
to extend the ordered sequence is direct we proceed orfd(19).
pulse at a time untip=n by using relation(16) and by One question remains to be answered. If the first cycle of
requiring at each new firing event the oscillators that have! firing events is ordered by construction, can we guarantee
already fired once in the previous ordered sequence not that the next firing cycles remain ordered as well? An affir-
fire at this event. The relation that we obtain is a generalizaative answer is necessary to demonstrate the convergence
tion of the cases witpp=2 andp=3 and is given by to the attractor. The learned firing sequence is ordered by

construction as well as the perturbed firing sequence in the
1 y2 -1 first cycle. Let us look from a different perspective at the
9 E>U$ (19 meaning of an ordered firing sequence. The phases af the
oscillators in the learned trajectory at the initial ime pgg.
for every I=ss<p=n. As the sequence is ordered by con-If there was no interaction between the oscillators, they
struction untilp—1 we can express? ! in terms of thevl ~ would reach threshold at timeg;=(1—y2)/gs. We call
as them “free evolution times.” There is one oscillator that will

After some algebra we obtain g11/—y§0/91>Ay2/g1
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have the smallest free evolution time. That one is the firstto ;3 1=R,(S,
fire. This condition can be recast into the expressiolq ( -
—1t5)<O0 for everyk#s, when oscillators fires first. We +ug-
rename this oscillator as number 1. In terms of the phases at

the initial time this relation states that oscillator 1 fires first if ) ) ) ]
(ygolgl_ygo/gk) —(1/g,—1/g,)>0 for everyk#1. Once for 1s<s— 1_< k=n. In thl_s_ relation the operat@, is applied
an oscillator fires, it sends an inhibitory pulse to the rest oK~ (S—1) times. In addition, we have

the population, which in turn acquire a new phaﬁh,'. For
the oscillator that has just fired,i(j:o. We repeat the rea-
soning and verify that oscillator 2 will fire next if the free
evolution times satisfy t6;—tZ,) <O for everyk#2. This

result is translated in terms of the phases 3s,/@, for n—1=s—1=k=1, where the operatoR, is applied
1 1 k
— Vi 9x) — (1/g,—1/g,) >0 for everyk+2. The procedure (s—1)—k times.

is iterated until the pulse emitted #t by oscillatorn has Let us start the second cycle. At the phases of the
occurred. In general, it can be stated that oscillatbres at oscillators areyy . The next oscillatos in firing is that hav-

to 1 (Y2 /05— iq /) — (U85~ 11990 for everyk#s g (1 g —y2 Jg,) + (o]~ f) ~ (Ligs—1igy) >0 for every
Hereyso ,‘"‘T‘dyko are the ph‘f"se%ff oscﬂlatog;sandkwst k#s. In this expression we can replagd,=y%, andy},
after receiving the puI;g at tm’@_ ’ rgspgctlyely. In the =y?. because the learned trajectory is periodic with period
learned trajectory the firing order is periodic with period T,. Since the first cycle of the perturbed trajectory is or-
and therefore it is not necessary to check the identity of th%ered we can relate thx% to the values they had in previous

firing osmllgtors for the followlng cycles. Now we repeat the firings. In particular, we know the important relations for
procedure in a perturbed trajectory that has been constructed dk [p"— vl < | 0 O| for th i
as ordered in the first firing cycle. We have that oscillator 2;32122;”&0?; arl;(lgt;“ ma}‘)ﬁ<kl|}so Yk °|Ofror iilecritisfalooggr )
fires at timet® because Y Y/gs—yS Y/ gy) — (1/gs— 1/ . s~ UkI=[Vs™ Ukl i
>0 for every kes, ?}fs WSS w);z(te 3'9,1 /(g gsys,l?'é) lators. These inequalities together with quzl) anéj (20
+AyS Ygg and yﬁ_llgk=yﬁ_1/gk+Ay§_1S/gk asnd lege tﬁle allow us to write that |(v3—vi)l<|(Y1e/91~Yio/ %K)
equalsityA;S‘llg S Ay Yg O:vs—l_vs—l We can assure —(1/g;—1/g,)| for everyk# 1. This inequality shows that,
that oscillators hsas firgd attks besalse 3(5_,1/ Vs lgy) for oscillators=1, the condition to fire first at™** in the
so '8k~ Yko 79k second cycle is satisfied.

S(S(—vf D v - ) —ui ]

(..
1
1

0F =RR(- - ReRv) ol D+ ) Fo D) o

+ (v '—vk ') —(1lgs—1/g) >0 for everyk#s. Since the  ~"The ordered trajectory now extends from=0
firing order is preserved in the first cycle of the perturbedi; {—=t"*1 To decide which oscillator will fire next

trajectory, this means that we proceed again to look for the oscillates that

has (/4 /95— Yie 191+ (ve T = v ") — (Ligs— 1/gy)

|(we =k HI<I(Ye0 195~ Yio 19 — (1gs— 1/gi)| = (¥sd/9s~ Yo/ 9 + (v '~ vk ") — (1Ugs— /gy >0 for

(200 everyk#s. In this relation we have useyl, =y, for

everyp and we know that there is an ordered trajectory up

. , i 1 -
for all firing events froms=1 tos=n and for allk#sinthe o time t"". For the case of nonequal oscillators we

) . . . 1 1 1 1 1 1
first cycle. For the case of identical oscillators we havehave (05" = v [ <maxsdvs —vid <|(Yad/ G2~ Yid 9

| T =3 M) < | (¥ -5 Y| for segments of the —(1/g,—1/g,)| and for the case of identical oscillators the

trajectory already ordered and, therefore, we can us¢zZBy. ~ condition is |(v5"* —v R )| <[v;—vil <[(Y30/ 92~ Yo/ W)

to prove that the firing sequence is ordered for the next-(1/9;—1/gy)|. These relations are valid for eveky#2.
cycles as well. For the case of inhomogeneous oscillators thEherefore, we have that the inequality that decides which
relation between the Variab|e£+p andvle involves a maxi- OSCi||at0I’ fires iS Satisﬁed fCB’=2 Th|S Implles that the next
mum. To ensure that the perturbed trajectory in the secon@sScillator to fire at"*2 must bes=2. It is clear that we can
and subsequent cycles is ordered we require, in this case, tH¥tend the argument to the rest of the second cycle to dem-

the perturbations satisfy, in addition to Eq&6), (17), and  Onstrate that it is also an ordered firing sequence. This pro-
(19), the restriction cedure can be repeated to the next firing cycles as well, be-

cause as the perturbations get smaller from one cycle to the
1 s .1 1 next, they are unable to modify the results of the inequalities
Ef-j(vkl — Vo )I<[(Yso 195~ Yko 19k) — (1/gs— 1/g))| that determine the firing order in one cycle as compared with
’ 21) the previous one. In conclusion, if the perturbations are such
that Eqs.(16),(17), and(19) are satisfied, the firing sequence
will keep the order set in the first firing cycle. For the case of
for all k, s with k#s in the first cycle, where max., identical oscillators this condition is sufficient to have an
chooses the maximum value of a function okédrandk2.  ordered firing sequence in subsequent cycles as well. For the
As before, we can relateﬁ’l to the variablesvg, taking case of inhomogeneous oscillators, E1) must also be
care that whers— 1<k this can be achieved using E{.8), satisfied to guarantee an ordered firing sequence in posterior
obtaining cycles.
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IV. APPLICATION TO PESKIN'S NEURONS 457

In this section we apply the results discussed in previous
sections to the special, but important, case of Peskin’s modeg 40!
[35], whereF;(x;) =1;— v;x; andG;(x;) =1 for every oscil-
lator. The integration of Eq(2) gives the phase variablg
=gi/yiIn(;/[1;— yix;(t)]) and its inversex;=(l;/y;)[1
—exp(—y/g,y;)]. If the firing threshold i;= 6;, we obtain
the natural frequency;= v;(In[l;/(I;—6)]) 1. In addition,
from Eq. (4 we obtain Hj(yj(t))=—g;/ylin(1
—vidij/liexd v /gyi(D]). If we require thatH;;(y;(t))=(1
—g;T))/(n—1), the synaptic coupling coefficient adopts the

form 0 20 40 60 80 100
firing order
=i (1-gT i Vi . . .
Jij =J{1l—ex o |\ o1 —exXp——Vil FIG. 1. Oscillator natural frequencies. The natural frequencies
9i Vi 9i of the oscillators are chosen randomly in the range from 25 Hz to

This expression can be rewritten using theariable: 45 Hz. The index on the horizontal axis corresponds to the firing
' order.
— % [1-giTi|]] 1 dx(t' ") . . .
Jij=11l—ex o\ -1 5 dt (22 Hzto 45 Hz. In Fig. 1 we present the frequencies asigned to
! ' each unit. All units have a decay constant 70 s * and the

As is shown in Eq.(22) for Peskin’s model, the synaptic threshold to fire is9=1 for every oscillator. The firing con-
coupling is proportional to the temporal derivative of the f|gur§1'§|on to be Iearn.ed will result from the chosen initial
membrane potential at all ordersJdnFor this case the value conditions for the variables of each unit. These values are
of the pulseP,(z) is given by obtained from the phasegl, that satisfy the constraints

given by Eq.(9) and after the application of the relation that
z -P i 0
Pu(2)= —)\kln[l—exr{)\—} 1_@(4 ko)” 23) links eachx andy. The values fory, have been selected
k
and the value foR(z) is

natural frequency (Hz
w
(8]

w
o

Ak recursively fromyj to y] as follows:yp=g,[ (1—r)Rg(p)
+rLg(p)], where Rg(p)=minge [Ry(p.9+yYgs] and
Ls(p)=maxs [Ls(p,9)+yYgql, starting withyd=0. Here

7z Plz) P minge.[f(s)] and maxe. [f(s)] means the minimum and
R(z)=—+ ke ﬁ, (24) maximum values for the functiof(s) inside the brackets for
9k 9k 9k values ofs such thats>p. The constant is chosen so that

0 . .
ith \o=q./ dP.=(1-aT)(n—1) . Wh y;<1. In our S|mul_at|o_ns avaluc_a m‘_arqundr=0.95 has
;Aaj\lke trfe %ker}i/\l/(a;lce Wii?h (respget:tl)tn(nwe )have d;: /(;Nze proved to be effective in generating initial values fothat
—1[1+b(2)], with by (2)=exp@\)(EXH—P/N\]—1). cover most of the intervdl0,1). Analogously, the perturbed
SinceP..<0 becausél’ > 1/g, for everyg weohave that firing configuration is the result of perturbations on the initial
bk(z)>(50 We verify that O<(kJIRk/dz<1 hd alsoR,(0)  Values for the variables. In the simulation, these perturba-
=0. According to Sec. lll these are necessary conditions fo%IonS obey the res_trlctlo_n_s_lmposed by_ E56), (1_7)' and
the stored firing sequence to be an attractor. 19 on.t.he associated initial phase shifts to achleve an or-
We can get an estimation for the speed of convergence b ereq flrmg sequence. the that we haye not imposed the
considering the case whenis large; i.e.|Pyo|<1. In this estriction given by equation Ed21) for inhomogeneous
condition we can linearize Eqs{zé) lar'1,d ("2"4) to‘ obtain oscillators and nevertheless obtain an ordered firing se-
_ s+1_ ;s :
Re(vR)=vR(1+Pyo/\,). The iteration of the operatd, in qtj:)ngiinwz rg?]\éin?h(zﬁf)@%;:gé%]g%nd 8029 ;:;{h
terms of the number of full cycleBl., made ofn pulses, p €INg varl W ' e
negative, with values around0.001 to— 0.003. In addition,

gves for this simulation we have chosety’=0 which forces
\ c \ Aygz —g,vn. Both, the learned and perturbed distributions
(RNe(vf)=exp — e (vj)™e" (25  of initial values forx are shown in Fig. 2 as a function of the
k firing order.
with = (9x/ ) 1/1—0g,T,|. For example, for valued, As was mentioned before, in this experiment we obtain an

=0.1s, g=25Hz, y=70s !, andvP=1 we obtainy  Ordered firing sequence even though relati@i) is not

=0.23 cycles. This simple estimate suggests that in less thafirictly satisfied. We can explain this result considering that,
iri i@ general, [v3,—v5|=|Ra(vi ) —Re(vi, )|, When
a cycle a perturbed firing sequence can converge to thé& 9 1 Uk Uk k1\Uk1 k2\Uk2 )1
stored one. the functionsR, satisfy additionally thaR,+#0, they have
To illustrate the theory we present results from numericap first derivative that grows or decreases monotonical.
simulations. We have chosen 100 Peskin's neurons withn this case we can write|Re(vi; 5 —Ria(vis b
natural frequencies distributed randomly in the interval 25<max;;[|Ri(d.ijlvi ™ —v§ *)[], where may;;(x) takes
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FIG. 2. x? andx?,. The top curve represents the stored distri-
bution of values of the variabbefor 100 different oscillators at the FIG. 3. Convergence rate. The thin curve represef&gNp)] as
initial time. This distribution was chosen to satisfy the orderinga function of the number N, of full cycles. e(N)
relations for the phases given by E8). The lower curve represents = \[1/(n— 1)=& ](x(""? —x""?)2]. The slope of the thick curve
the perturbed initial distribution of values farfor the same popu- is 1/u,=(1—gmT))¥/9m. With g, the maximum natural fre-
lation. This distribution satisfies the constraints given for the phas@luency, and is a good estimation of the limit rate of convergence.
shifts Ay by Egs.(16) and(19) and restriction26). The numbers  The data are the same as used in Figs. 1 and 2.
on the horizontal axis correspond to the order of firing in each

cycle. We used oscillators with natural frequencies as in Fig. 1, . . ) L . .
randomly chosen between 25 Hz and 45 Hz. The valuey fd 6 our simulations is satisfied even though relati@tl) is
for all the population werey=70s! and =1 and usedT,  Not. We observe that the convergence is very fast to the

=0.1125 s. learned sequence. This is illustrated in Fig. 3, where we
plot the logarithm of the average shiftse(N;)
the maximum value of its argument with<k,i,j<n, and = \/1/(n_1)2222(X2NC_X20NC)2_ Herengc:XS(t(nNc)) and

dy,i,j takes the values 1 or 1 depending on the concavity of | nN,

— (NNe) .
. . ) : =Xgo(t, ) are the values foxk for the oscillator that
the functionR,.. We can continue the recursion and write for _S° . sollo ) iy . .
an ordered trajectory fires in the orders evaluated at the firing time of oscillator

that fires at orden, in different cycles. The subindexdis-

o T —os, tinguish between the perturbed and learned firing sequences.
. In this figure it should be remarked that the rate of conver-
<max|R(gmax |R(gmax - - -max(|R(q|v;{~ gence agrees well with the estimate given by &5).

I We have performed a series of experiments with frequen-
Ui o ’ cies randomly chosen in the rang25,30 Hz. In Fig. 4 we
where we have omitted the subindexes of the functiBins show the initial distributions fox in both the learned and
max andq and these functions are appliedtimes. This perturbed trajectories. Both distributions satisfy the ordering
relation shows that we can guarantee that the second cycle iglations of the theory with the exception of relati@1) but

ordered if obeying(26). We note that the perturbed trajectory converges
to the attractor very fast, as it is shown in pén of the
max(|R(q- - -max(|R(alv{ " =v; D)) figure. , _
e .1 We have repeated the experiment with the same learned
<min|(yg, /95— Yjo 19j) — (1lgs—1/g))| sequence as in Fig. 5 but, in this case, the perturbed sequence

! starts from initial conditions that are a scaled version of the
learned ones. The plot of convergence shows that after a
short transient, where the firing order may be upset, the dy-
namics find eventually a path to the attractor. This suggest
that the valley of attraction is larger than the set of trajecto-
ries complying strictly with the ordering relations. For com-
parison we have repeated the experiment but now the per-
turbed sequence starts from completely random initial
conditions. In Fig. 6 it is shown that in this case the attractor
—(1/gs—1/g;)| (26)  is never reached. We end the series with an experiment car-
ried out with identical oscillators having a natural frequency
as the restriction to obtain ordered trajectories in the secondqual to 25 Hz. In this case we intentionally distort the per-
and following cycles. Here maxand min take the maxi- turbed sequence, without disobeying the ordering equations.
mum and minimum values for<i,j<n and 1=<s=<n. This  In Fig. 7 we show the results that confirm that the dynamics
restriction turns out to be more relaxed than Exf) and in  flows directly to the attractor right from the beginning.

for 1<s=n. In the case of Peskin’s neurorR;(z)=

— 1\ b (2)/[1+by(2)]<0 for all k and we can chose the
function Ry, that has the maximum first derivative for nega-
tive arguments and write the condensed form

max(Ry)"(— [vF ™ = v |<min| (v, /gs— Vo Y/g))
1) ]
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FIG. 4. xJ andx2, and rate of convergence. i) each curve FIG. 5. xJ and xJ, and rate of convergencéa) each curve

represents the stored distribution of values of the varialite 100 represents the stored distribution of values of the variatite 100
different oscillators at the initial time. The top curve of this figure different oscillators at the initial time. The top curve of this figure
contains the distribution chosen to satisfy the ordering relations focontains the distribution chosen to satisfy the ordering relations for
the phases given by E@9). The lower curve represents the per- the phases given by E@9). The lower curve represents the per-
turbed initial distribution of values fox for the same population. turbed initial distribution of values fox for the same population.
This distribution is calculated to satisfy the ordering restrictionsFor this experiment this distribution is simply a scaled version of
with relation (26) instead of Eq.21). In (b) we have plotted the the learned distribution2=0.5x20. In (b) we have plotted the shifts
shifts IMe(N.)] (light curve vs the number of cycles and the theo- In[e(N.)] vs the number of cycles and superposed for comparison
retical convergence ratéark curve. We used oscillators with natu- the theoretical rate close to the attractor. We used oscillators with
ral frequencies randomly chosen between 25 Hz and 30 Hz. Thaatural frequencies randomly chosen between 25 Hz and 30 Hz.
values fory and 6 for the whole population werg=70s* and  The value fory and ¢ for all the population werey=70 s * and
=1 with T,=0.1072 s. 0=1 and usedr,=0.1072 s.
V. DISCUSSION . . .
each neuron fires once per cycle. In addition, the prescription
In the present work we have developed a procedure tto obtain the synaptic values can be implemented using the
store simple periodic firing sequences in a fully connectedirst firing cycle. An interesting aspect of the procedure is
set of IF neurons that communicate via instantaneous antthat the calculation of the synapses is related to the evalua-
inhibitory synapses. The type of neurons are quite generatjon of the temporal derivative of the state variable of each
however, they need to satisfy certain criteria about the conunit at the moment of the reception of a pulse. An important
cavity of the leak function. In particular, the method is ap-point that is necessary to remark is that in common ap-
plicable to Peskin’s neurons with arbitrary natural frequen{roaches, the synaptic couplings are chosen as negative and
cies. We have proved that the stored firing sequence is aqual. In these cases, systems of fully connected homoge-
unique attractor for the dynamics, with an attraction valleyneous IF neurons with instantaneous communication reach a
that is constituted by firing patterns with a similar firing or- periodic solution after a transient. A characteristic of this
der as the stored sequence. We have provided restrictions solution is that the firing times are equally distributed along
the extent of the perturbations in the initial conditions of thethe firing cycle. This necessarily means that when a neuron
different units, which guarantee that the firing order is pre-ires, the others receive the pulse with a different phase. Oth-
served at all times during the evolution to the attractor. Theerwise, they would fire the next pulse simultaneously as they
stored firing sequences have precise time relations betwedtave the same natural frequency. These solutions, whose sta-
the firing events of different units. For a model with no time bility have been the subject of many studies by others, are
delays, as that we have discussed in this paper, this mearadically different from the attractor we have discussed in
that the oscillators are not synchronized in the attractor. Wéhis paper, because it is impossible to get equal values for the
explicitly show a method to use structured inhibitory syn-J;; with neurons that have different values for their phases at
apses to get stable and general firing sequences in whidthe moment of the reception of the pulses. Tdie initio
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represents the stored distribution of values of the varialite 100 represents the stored distribution of values of the variatite 100

different oscillators at the initial time. The top curve of this figure différent oscillators at the initial time. The top curve of this figure
contains the distribution chosen to satisfy the ordering relations fofOntains the distribution chosen to satisfy the ordering relations for

the phases given by Eq9). The lower curve represents the per- (€ Phases given by Eg9). The lower curve represents the per-
turbed initial distribution of values fox for the same population. turbed initial distribution of values fox for the same population. In

For this experiment this distribution has values f@r randomly this experiment we achieve a very distorted initial distribution that
chosen in the interval0,0.9. In (b) we have plotted the shifts nevertheless satisfies the restrictions of the theory to give an or-
In[¢(Ny)] Vs the number of cycles and superposed for comparisoifféréd firing sequence. Iip) we have plotted the shifts[laN)] vs
the theoretical rate close to the attractor. We used oscillators with'€ number of cycles and superposed for comparison the theoretical

natural frequencies randomly chosen between 25 Hz and 30 Hate close to the attractor. We used oscillators with natural frequen-
The values fory and ¢ for the whole population werg=70 s * cies of 25 Hz. The values foy and @ for the whole population were
and 9=1 with T,=0.1072 s. y=70 s ' and#=1 with T|=0.1048 s.

fixation of the values for thd;; is normally done in most of efficiencies that depend on time, and the effect of each pulse

the work on the subject and therefore might conceal interesf!NS out to be convolutions of the products of these synaptic
ing phenomena. efficiencies and the pulse profile. The cases of sparse con-

For the case of Peskin’s neurons we have provided estf?€ctivity are easily dealt with if we replace @/ 1)(1
mates for the speed of convergence to the attractor, whici 9s11) With 1/cg(1—gsT,), wherecs is the connectivity of
suggests a very fast convergence with rates of less than of&ch neuron with the rest. In numerical simulations not
pulse per neuron—a full firing cycle — to almost reach theshovv_n in this work, we have used with success networks of
attractor. This observation is relevant if we were to employ &°€Skin's neurons in which each member is connected only to
model like that proposed for a pattern recognition task. If this2 Sécond one. Some modifications are necessary to the order-
were the case we could get full recognition with one firingiNd preservation relations, though. N
event per neuron. This result is interesting from a neurobio- ©ON€ interesting observation is that a perturbed firing se-
logical perspective because it supports experimental observgUence that preserves the firing order usually is the result of
tions in which behavioral responses are reached after vedpitial conditions in the membrane potential that are approxi-
few pulses per neurof86]. We can think of generalizations mately a scaled version of the initial conditions used to gen-
of the model to include at least two other aspédtsommu- erate the learned firing sequence. In the language of the vari-
nication delay and pulses of finite width afit) a non-fully- ~ ablesvg they can be obtained when we usg=(x—1)
connected system. In work not presented in this paper we(t5 *—t5) with x>0, and then the new firing interval is
have explored successfully both aspects. It is possible to indS*1—t%)= k(t571—15). The example presented in Fig. 5
corporate synaptic delays if we keep computing the synapsegas obtained by making this type of selection. Thus, it is
at the moment of reception of the pulse. For the case ofonceivable that we could use the proposed system to store
pulses with finite width the theory leads to synapses withthe information of external signals in the values of the initial
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conditions of the membrane potentials. The preservation ofionlinearities that are responsible for the pulse generation
the firing order, when the initial conditions of the perturbedand recovery of the membrane potential have died out. In
state are a scaled version of those used in the learning staggther words, as long as the membrane potential has an evo-
assures a recovery of the stored signal, as the dynamics bftion closer to a leaky capacitor, the synaptic prescription
the network converges to the attractor. A direct applicatiorthat uses only the membrane potential appears to be effec-
could be in the recognition of images under different levelstive. This observation clearly imposes some restrictions on
of illumination. the connectivity of the network. A satisfactory periodic solu-

A further step to make a model of these IF neurons mordion can be obtained if each neuron receives pulses within
realistic is to incorporate a refractory period after the emistime windows located away from the extremes of the firing
sion of a pulse. As we are working with inhibitory synapsesperiod. This in turn may require that each neuron receive
and the final firing frequencies become smaller than the natwnly a few pulses per cycle. In this respect it is important to
ral values, an incorporation of a refractory period appeargoint out that a reduced connectivity can also improve noise
that will not modify substantially the main results. On the immunity related to random shifts in the firing times. As the
other hand, the refractory period is a manifestation of theaverage time differences between two firing events involving
true dynamics of the membrane potential and an acceptabnnected neurons increases with reduced connectivity, the

inclusion may require the use of a more sophisticated modeioncontrolled time shifts are less likely to upset the firing
for the neuron. Consequently, we have performed simulaerder, which is crucial to the convergence to the attractor.

tions with oscillators made of patches of Hodgkin-Huxley
membrane$37] and we have been able to force the mem-

brane to fire periodically with a lower period when stimu-
lated with an external periodic inhibitory signal, and with
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